Wave function of the universe: a short note

The quantum description of the universe is still an open probleml
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Chapter I

Classical problems

LI Introduction

Let us consider the equation
¥ = f(x,a,t). (L)

If we know x, &, and f with all its derivatives at some arbitrary time ¢, we can con-
struct the solution of the equation. Consider

T =0, ft+0cff+OLf. (12)

The right hand side corresponds to a function that depends on , & and t. This occur
for all che derivatives of x and therefore we can write

Zo
21

g

ot = t0)® +.... (13)

x(t) = o + do(t —to) + == (t —to)? +

Depending on f, the sum may converge for |t — tg| < r.Recall that if r — o0, then
the series converges for all values of t. In practice, even if the solution is valid for all
t, we are interested in t > tg and this type of problem is known as an initial value

problem.

As an example, consider
f(l’, jjv t) = —wsz’, <I4)

with g and &g given. Then we have

. Tow? Tow?
x(t) = wo+do(t —to) — 02, (t —to)? - 03, (t —to)* +
2 - 3
— Y )2 o ) — 1)
= :r0<1 o (t =) —|—...)+w<w(t to) — 7 (t — to) +>
= xzocos(w(t —tg)) + el sin(w(t — to)), (L5)
w

5



6 CHAPTER 1. CLASSICAL PROBLEMS

for all values of . Of course we could arrive to the same solution by directly solving
the differential equation, i.e., the famﬂy of solutions are given by

z(t) = Acos(wt) + Bsin(wt). (L6)
From

xo = Acos(wty) + Bsin(wty), &g = —Awsin(wty) + Bw cos(wty), (17)
()= (Lot eV (3) o

(g) _ <cos(wt0):c0 — sin(wto)* ) . (19)

sin(wto)zo + cos(wtp) T2

we can write

to find

€&

8

With these expressions we obtain the result given in equation ([L5]). There are other
ways to determine A and B. Assume that we give 1 = x(t1) and x5 = x(t2) with
to > t1. Then we will have

() = (oter ntonn)) (5): 0o

sin(wta) . .sin(wtl)
@) _ <sin<go<;@z;1)>>x1 Slatty ) ) (LD

T Sn(a-) 1 T Sl —t) L2

and obtain

This problem is not longer an initial value problem. Since it is set on the interval £ <
t <t and we have data on the boundaries of the interval, it is called a boundary value
problem. In particular, the boundary data is (1) and 2(t2) and thus the problem is
called Dirichlet boundary value problemﬂ

For a initial value problem & = f(x, &,t) we can consider the first order system

y=x, y=f(z,uy,t). (LI2)

A state of the system is defined as the point (x, y) in a plane. Thus, the initial value
problem corresponds to specify the initial state (g, yo) and to predict a final state
of the system at some ¢ > tg. The answer to this question will give a curve in such
a plane that joins the initial and final state. Of course, the coordinates of the curve
I'(t) = (x(t),y(t)) are a solution of the above equations.

For the boundary problem discussed above, we consider the state as the point
(,t) in another plane. Since we know the initial and final state, the question we can

"We could instead have @(t1) and @(t2) and this problem is referred as a Neumann boundary value

problem.
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ask in this case is the curve that join this two points. Again, the curve y(t) = (x(t), 1)
is a solution of & = f(x, &,t). This Dirichlet boundary problem have the property

that it can be cast into a variational problem with an action defined as
to
S[z(t)] = / dt’ L(z,dz/dt’,t'), (113)
t1

where L is the Lagrangian. The action is a functional and its domain corresponds to
the set of curves in the (x,t) plane that joins the initial and final state. Hamilton’s
principle states that demanding

5S
dx(t)

=0, (114)

with Dirichlet boundary conditions, i.e. dx(t1) = 0 = dx(t2), is equivalent to de-
mand

d oL oL

I I.I

dt 0% ox (L15)
This is the Euler-Lagrange equation. For a Lagrangian of the form

L.o

L= §x - V(x,z,t), (LI6)
we obtain 5V d&v

Thus, the boundary problem can be derived from a variational problem if there is a

V such that 5V dev
r,t) = —— + ———. I.I
f@dt) =50+ W os (L18)
We will assume that this is possible. Hamilton’s principle implies that among all pos-
sible curves connecting the initial and final state, then, the actuaﬂy curve is the one

that extremizes the action, i.e. the one that solves the Euler-Lagrange equation.

So far, the plane (,t) is an abstract space and the action has no geometrical
meaning. Moreover, we can generalized the Dirichlet boundary problem by consid-
ering x = (z!,...,2") and thus the curves are defined on R™*!. The line segment

in this space is given by
ds® = v3dt%, + 6;da’da? (1.19)

where vg has dimensions of velocity such that ds? has dimensions of length squared.
In a minute a justification of writing ¢ instead of ¢ will be given. The length of the
curveis ¢ = [ dsandwe conviniently parametrized it using ¢z and thus

1 dz? dad
= dt = dt 1 0; 1.20
/ g - / F \/ 2% dtp dtp (120)

th
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We see that there is a Dirichlet boundary problem in which the action has a geomet-
rical nature. On the physical perspective, it seems that this scenario has no meaning.
This is not true after considering Minkowski space R™1 ie. special relativity, rather
than its euclidean version R™ 1. For this reason, from we used the euclidean time t g
instead of ¢ and thus we see that vg = c.

We continue in R but now we further generalize the Dirichlet boundary prob-
lem. For n = 2 we can consider the problem of ﬁnding the surface that joins two
different circles, see ﬁgure The states are know the closed curves instead of points

().

Figure LI: Illustration of the possible curves/surfaces for the Dirichlet boundary

problem.

and the action corresponds the area. Forn = 3 we consider the states to be two differ-
ent half spheres and now the action corresponds to a volume. Thus, for general n, the
action corresponds to the n-dimensional volume that joins the (n — 1)-dimensional
area states. This generalization finds home in (euclidean) string theory.

The generalization is mathematically pleasing. Notice that the setup is based on
the fact that R"* is given. The n-dimensional volume and (n — 1)-dimensional area
are imbedded in R™ 1. Let us write the line segment of R+ a5

ds%nﬂ = gudatda”,  gu = o (1.21)

with u,v = 0,1,2,...nand 2° = ctg. The line segment on the volume, described
with coordinates {o"}, corresponds to

dstm = hij(o)do’do?. (122)
The metric elements g, and hy; (o) are related by

ozt dz”
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For the initial and final state, described with coordinates {£{},{£5} respectively, we
can have
o' o’

hij(0). (124)

ds3s, , = Yan(&)dET 2dET 5, Yan(€12) = agw, oer
1,2 987 9

The action is given by

Slz(0)] = / d"ovdet h = / d”o\/det <g%guy>. (125)

With Dirichlet boundary conditions we find that the Euler-Lagrange equations are
—Aya# = 0. Let us work an = 2 example. We parametrized the surface as

tg =o', z'=r(c')coso?, 2*=r(c!)sinc?, (1.26)

and call 02 = O with @ ~ 0 + 2. Thus we obtain

ds?s = (1 + 72)dts, + r*(tg)d6?, (127)
and
tg2
S =27 / dtg r(tE)\/ 1472, (I.ZS)
te,

The equationtosolveis 7 = 1472 Asolutionisr(tg) = ro cosh(tg/ro) and there-
fore the initial and final states are circleswith radius r (¢ g1, g2) = 7o cosh(tg1,g2/70),

see figure

Figure 1.2: Example for an = 2 case.

1.2 The action for the universe

A more abstract problem is to consider a boundary problem for g,,, () itself. From
know on we will work with real time. Let g,,, () be the metric elements of a pseudo-
Riemannian manifold M™?!, the line segment is

dsfwn,l = g (z)datda, (1.29)
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and the equations to satisfy are Einstein’s equations

1 n
R, (9) — igWR(g) + g = 87TG§V)T#1,, (1.30)

where Ry, is the Ricci tensor, R the Ricci scalar, A the cosmological constant, T},

the energy-momentum tensor and GS\?) Newton’s constant in 7 spatial dimensions.
Solving these equations is not a simple task. Even the initial value problem is not
straight forward. The first step is to assume that the topology of R x X, this cor-
responds to a n + 1 decomposition and the formalism is referred as to the ADMﬂ
Without giving too much details, for the initial time o we must give the (spatial)
metric and the extrinsic curvature associated to X, specify T}, and satisfy two con-
straints (later they will referred as to the Hamiltonian and momentum constraints).
Later, there will be two first order in time partial differential equations for the spatial
metric and extrinsic curvacure. After solving these equations, the result must corre-
sponds to a n+1-dimensional metric of a pseudo-Riemannian manifold foliated with
hypersurfaces ¥ for each t.

Another way to solve, which is the way that usuaﬂy we find solutions, is to make
an ansatz of the metric g,,,, and T},,,. Their form is usually motivated by symmetries.
The simplest example is flac spacetime, i.e. Minkowski. Let g, = 1, and T}, = 0.
One finds that R, (n) = 0and R(n) = 0. This imply that A = 0.

Since we are interest in cosmology, consider the following toy cosmological model
that satisfy

1
Ryu(9) = 59u R(9) + g = 0, (13D)
with
ds? = —di? + a2(t) (2 4 r2q02 (132)
1 — kr? ' ’

Notice that the scale factor a(t) is dimensionless and 1/k of length squared. These
options indicate that space slices can be hyperbolic, flat, sphericaL Also notice that
under rescaling of length, ie. 7 — Ar where A, we have k — A2k and the metric is

invariant if @ — A~ ta. Notice that

2 . .
157];”2 +72dQ? correspond to a spatial maximally

symmetric space.

The 00 and ij components of Einstein’s equations give

N2 , .\ 2

a Ak a a k

T A Sy (L [ I
<a> 3”@ ‘ot <a> a?’ (133)

respectively. Recall that 1/A has dimensions length squared. By plugging the first

equation to the second equation the system becomes

a Ak a A
() -2 L2 (134)

a a

*For details of this formalism see arXiv:gr-qc/0703035v1l


https://arxiv.org/abs/gr-qc/0703035v1
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Notice that the first expressions acts as a constraint. Let us focus on the solutions
with A > 0. One possible solution is

a(t) = cosh(y/A/3t), (139)

where we have used the length rescaling to set the coefficient to unity. Then

tanh?(\/A/3t) =1 — % sech?(\/A/3t). (1.36)

This immediately imply that & = A /3 > 0. If instead we consider

a(t) = sinh(/A/3t), (137)
we obtain

coth?(y/A/3t) =1 — %cschz(\/A/&), (1.38)

and therefore k = —A /3 < 0. Lastly, for k = O we have & = £1/A/3 a and thus we

have two options

as(t) = et VAL, (139)

By setting
A

T = ———59
. 87rG§\?;)

J2228] <I40>
we see that A plays a role of a source. If the above solutions are models of universes,
they correspond to the ones in which we are not in them! Nevertheless, we can in-

terpret the solutions for the scenario in which other sources are small compared to
A
A,

For these theoretical universes, we see that in the case a(t) = cosh(y/A/3t) there
is no curvature singularity. For a(t) = sinh(y/A/3t) there is an apparent singularity
att = 0. For the remaining cases, the apparent singularities are at t — Fo0.

For the singularity free universe, we have

2
ds? = —dt? + cosh®(\/A/3t) | ——s +77dQ% ). (141)
A/ 3)r?
Let A = 3/¢? and r = £sin1). We obtain
ds? = —dt? 4 £2 cosh?(t/£)dQ3 (1.42)

which corresponds to de Sitter spacetime, ds? in global coordinates. ds™ ! alsoits
relative AdS™ !, have the property that it can be taught as a hypersurface in an ambi-
ent space. For de Sitter, the ambient space is R™tLL The hypersurface corresponds
to

napXAXB =0 A B=0,1,....,n+1. (1.43)
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Parametrizing the hypersurface as
XY = ¢sinh(t/f), X% =(90%cosh(t/l), (1.44)

witht € R we find
ds? = —dt® 4 £2 cosh?(t/£)dQ3. (1.45)

This choice of parametrization gives the global coordinates of dS™!. A cartoon

of de Sitter spacetime is shown in figure [.3| The solutions a(t) = sinh(t/¢) and

Figure 1.3: de Sitter as an hypersurface.

a(t) = e*/¢ corresponds to other parametrizations of the hypersurface. The differ-
ence between these cases with a(t) = cosh?(t/¢), is that they do not cover all dS*.
Since dS" ™ isa maximally symmetric spacetime we have

2
=—" R} R=R=(n+1)n/ (1.46)

LV P
& n(n+1)

R;u/poc

we conclude that the singularities for the parametrizations that do not cover the hole
spacetime are actuaﬂy coordinate singularities.

1.2.1 The action for dS™™!

The Einstein-Hilbert action is defined as

1
Spulgw) = —— [ d"z/—detg (R - 24). (147)
167Gy

Instead of dealing with the general variation problem, let us take a short cut and con-
sider a metric on the form

ds* = —N(t)dt? + a®(t)dQ3. (1.48)
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Here, the scale factor a(t) has dimensions of length and the dimensionless function
N (t) is known as the lapse function. We have that

6 (& (a\® Na 6
= — | =+(=) === — 1.49
R NQ(a+(a> Na>+a2’ (L49)

d*z\/—det g = dtd®0\/det yNa®, (150)

where 4 is the metric on S3. The action becomes

and

. d /1 a%a
SEHhrN]—l/dt[LOLava+dt<2A]v>], (151
with

. 1 aa? A g 8 Gg\?;) 2 (3
L(a,a,N) = 2 <_N + Na — §Na ) , A= GArca(S?) 370N
(152)
Now, the total derivative does not affect the Euler-Lagrange equations but modifies
the variational problem. It is easy to see that the total derivative will give us a factor
proportional to §d. This is not suitable for a Dirichlet boundary condition. There-

fore, the correct action must be

SMM:&MMM—/&Q<;iﬂ. (153)

The second term, in its general form, is known as the Gibbons-Hawking-York termﬂ

Notice that the Lagrangian does not depend on N, ie. it is not dynamical, and
thus 2% = 0. The Euler—Lagrange reduces to 37% = 0and gives

ON
1 /a\? A 1
— = = _ _ I.
N <a> 3 a2 (L54)

The equation for the scale factor result
i@ [(a\® _.a 1
2+<>—0N:Aﬂ<A—2>. (155)
a a a a

After setting N = 1, we find the same 00, 7 equations for k = 1. Therefore, we get

N2 .
a A1 a A

Sy =2 - -2 156
<a> 3 a2 a 3’ (L36)

’T refer to “A short note on the boundary term for the Hilbert action”, Modern Physics Letters A
2014 29:08b y T. Padmanabhanand and “Robin Gravity" J. Phys.: Conf. Ser. 883 012011 by Krishnan,

Maheshwari and Bala Subramanian for a detail discussion of this term.

the same expressions
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but now we are dealing with a boundary problem with a constraint. For A > 0 and

¢ = /3/A, consider the solution

a(t) = Acosh(t/¢) + Bsinh(t/¢). (157)
Notice that it can be written as
a(t) = aet/t + get¢, (1.58)
vidh A+B A-B
a=502 =t (1.59)

The constraint gives 4a3 = 0?. Therefore

a(t) = (a + i) cosh(t/0) + (a — fi) sinh(t/2). (1.60)

Notice how the constraint changes the boundary probleml For the final state we
consider to > £ and as = anet2/t. If we choose the initial state at t = 0, we have

that
52

a; = ayx +

(L61)

dov,

a 1 7

with a; > /. Hence, after specifying the final state, the boundary problem traduces
to an initial condition problem™ Notice that for a; = £ we obtain ax = ¢/2 and
therefore we get ds?* in global coordinates. On the other hand, consider the initial
condition aj > ¥, then o, =~ 0 for the negative root or (x = 1.

‘We can invert to find

‘We end this discussion by analyzing the problem in phase space. The momenta

e oL  1ai oL
ad
== T on = e
The Hamiltonian result
H=NH, (164)
with \ A )
_ 2, 3 T
H(a,p) = P teon® o™ (1.65)
Then, the action becomes
Sla.p.N] = [ dt (i~ No(a,p). (166)

Wee see that the equation for N gives H = 0. This is known as the Hamiltonian
constraint and gives (.54]). Hence, we interpret N as a Lagrange multiplier.

*If instead we do not think of the problem as a boundary one, we will arrive at the same conclusion.
This is due to the fact that the system is the universe not part of it. Hence, the boundary problem
mathematicaﬂy accommodates the physical problem and shows how it reduces to an initial condition
problem, Of course this is not just matter of elegance, quantum mechanics demand this framework.
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1.2.2 The inflaton

Let us introduce a scalar field ¢, the inflanton field, with potential V(¢). The goal
is to replace the dynamics of the cosmological constant with this field. Then, to the
gravitational action with A = 0 we add

S—5, -1 / d*ay/=g (V. 6VF e + 2V (9)). (167)

Since we are interested in a Dirichlet boundary problem, S, has a Gibbons-Hawking-
York term. We again consider the metric

ds? = —N(t)dt? + a(t)dQ3, (1.68)

and ¢ = ¢(t) due the symmetries of space. Then, the action for the inflaton is
S[6] = Area(S?) / <¢2 Na3V(¢)) . (169)
Let ¢(t) (t)/+/Area(S3) and V(p) = Area(S®)V(¢/+/Area(S3)). Then,

the total action gwes

Sla, ] = /dt [—;i\d; + E)\a—i- —3go — Na®V(p )} (1.70)

The equations are

N
;((3) —Asb?) = ) -

. N2 .
a a . a 1

2—+ (=] —2N= = N?2[6AV(p) — = ) — 3)\p2,
+<a) : ( ©) QQ) 5

a

LA
¢+3a¢—¢N = —N?V(p). (L.71)

For N = 1 we obtain

. 2
L
2Z+<“> = 6AV(g) — 3P —

@+ 329"’ V() = o (172)

‘We can rewrite the equations as

G+ 3%@ V() = O 173)
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Notice that if
V((p) =W,

a solution for the field is ¢p = ¢, = const. The remaining equations are

a\? 1
<> — 2)\V[) - 72,
a a

2= 2w
a
Thus we see that
A =6)\V).
For Vy > 0 we have de Sitter solution with
1
2)\V0 = 672

Clearly for this case, the initial and final states of the inflaton are the same.

(1.74)

(L75)

(1.76)

(L77)



Chapter 2

Quantum aspects

2.1 Canonical quantization

Following Dirac’s work on the quantization of constraint systemsﬂ the wave function
of the system with scalar factor and scalar field is ¥(a, ¢) and must satisfy

HV(a, ) = 0. 20)

This requieres to quantize

_ A 1y 1
H= 2ap —i—2a3p + a’V(p) N (2.2)

where p is the momentum conjugate to . Then, in the Schrédinger picture we have
that

p— —ih%, D — ihaa@. (2.3)

Since 1 ] 1
—p? =p-p=p’-, (24)
a a a

there is an ambiguity for the quantization. For this reason we consider

1 h
P = A CRDR (29)

where s is a real parameter. The resulting equation

R\
Qas—i-l

s hQ 2 3 1
0a(a°0, W) — 2—&6@\114— (a V(p) — 2)\a> U =0, (2.6)
is the Wheeler-DeWitt (WdW) equation for che system. Let us search for solutions

where the potential is approximately flat, Le. approximately constant. Classicaﬂy this

"The reference is PA.M. Dirac: Lectures on Quantum Mechanics, Belfer Graduate School of Sci-
ence Monographs, Vol. 2 (Yeshiva Univ., New York 1964)

17
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corresponds to an approximately constant value of the scalar field. This approxima-
tion allow us to drop the term 82\11 and the equation reduces to

h2 s V((p) 3 1
e i1 0a(a°0,¥) + <)\a - 2)\2a> U =0. (2.7)

This can be interpreted as a one dimensional quantum system

oo (.0
where
_ 1 V(e) 3
Ueff = ﬁa Ta <29>

The potential for V() > 0 is plotted in ﬁgure It vanishes for a = 0 and a, =
1/1/2XV(¢) and its maximum is located at dpax = a./v/3.

U eff(a)

a*
a

QAmax

Figure 2.1: Effective potential plot.

If we follow the standard rules of ordinary quantum mechanics, we must demand
that the wavefunction of the universe must be normalizable. This ensure a proba-
bilistic interpretation of the wavefunction. Normalization in practice demands to
impose a particular boundary condition. On the other hand, since physical observ-
ables are Hermitian, this restricts the choice of boundary condition as well. Apart
from these mathematical requirements, it will the comparison with experiments that
decide which boundary condition is adequate.
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As an example, consider the time-independent Schrédinger equation of a particle
with potential that has spherical symmetry. Then, we choose spherical coordinates
and therefore the equation will have a coordinate singularity at 7 = 0. The equation
is thus only valid for 7 > 0. Due to the rotational symmetry we use separation of
variables. Then, the angular part of the wavefunction is given by spherical harmonics
and we are left with the radial equation with an effective potential. The radial part,
denoted as R(r), is then written as R(r) = u(r)/r. Hence, the boundary conditions
are considered for u(r) instead of R(r). This is valid since for n dimensions we will

have
o

/d”x\/§|1/1|2 :V(S"_l)/drrn_3|u\2. (2.10)
0

Forn = 3 we see that u must be normalizable. The problem reduces to find solutions
of u that decay at r — oo and are regular at 7 = 0. The substitution R(r) = u(r)/r
is the fruicful but consist more than just a re-writing. The radial equation contains a

term of the form .

— Tn_l&«(r”_larR), (2.10)
and after introducing it becomes
1., 1 1
— ;@u —(n—3) <7Q8Tu — r?’u) . (2.12)

Forn = 3 it reduces the problem to a particle in half the real line. The kinetic part of
the classical Hamilronian of this particle has the form p? /7 and after the replacement
p — —ihdy, it must give — 292 Therefore, it chooses a particular ordering!

Notice the similarity of the resulting WdW equation given in equation ([2.8]). If

this equation is derived from the classical Hamiltonian

1
Hc = ap2 —+ Ueffa (213)

it is reasonable to consider a ordering with s = 0. Moreover, the analogy suggests
that the wavefunction should be regular ac a = 0.

We have to be careful since we are not dealing, say, with the toy model of the
hydrogen atom, the system of interest is the universeﬂ Other physical requirements
must be take into account. The quantum theory in a classical limit must reproduce
a classical universe. Bear in mind that in the WdW there is no time and therefore
it must emerge by some mechanism. On the other hand, we know that general rela-
tivity in a quantum field theory point of view is not renormalizable and thus we are
just dealing with an effective theory. This just means that our current description of
interactions between gravity and matter is valid for low energies or equivalent large
distances.

*Later we will see that the WdW equation has a solution for s = —1not s = 0.
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Then, to reproduce classical results, we first seek for solutions in the semiclassical
limit. In practice this amounts to consider the WKB approximation. Then, we forget
about normalizing the wave function and consider the ansatz

U = eiS, (2.14)
with
S=8y+hS + 1S +.... (2.15)
Then, at order A% we obtain
1 /0 .\
— | — = 2.16
and at order A
0 i 1 0 s
-~ Q = | - = — 1. 217
551 = 2 (aaaSo 920 T a> 217)

Notice that at A° order, the ordering problem is not relevant. Moreover, the expres-
sion given in equation ([2.16]) can be interpreted as the Hamilton-Jacobi equation of
a classical particle with zero energy from which the equation (2.8]) can be derived.

Thus, the classical momentum corresponds to

0
= —3&p. 2.18
p=5 50 (2.18)
The equation ([2.16]) can be written as
0 .t a a)’
— =+ — ] -1 2.1
da 50 A ( o, > (219)

Following the particle interpretation, a real classical momentum is only obtained for
a > a,. Then, we can expect that in this region we should recover a classical universeﬂ
Since p = —aa/\, we have

i=7F (“)2—L (2.20)

For an expanding universe we have @ > 0 and this corresponds oSy . A coﬂapsing
universe correspond to SS’ . Which universes are we talking about? They are solu-

tions of equation (2.20]). The equation can be written as

<a)2 a2 =1 (2.21)

o

’If the reader thinks that this is extremely hand wavy, I recommend reading arXiv:0909.2566 and
DECOHERENCE IN QUANTUM COSMOLOGY by J.J. Haliwell.
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A general solution is of the form
a = a,cosh({(t)), a= £sinh(£(t)). (2.22)

For a expanding universe we can set {(t) = t/a, to obtain a = a, cosh(t/a,) with
a. = 1/y/2AV(y). In this approximation we can have 2AV(p) = 1/¢% and there-
fore the solutions is dS% in global coordinates. In order to have a > 0 we must re-
strict the solutionto 0 < t < 00. For @ < 0, we can consider the same solution with
—oo <t <0.

The solution of SOi is

5 3/2
SE@) = Coli) & = (() - 1) , (223)

and the solution for Sy is

Qs

SE = Cilp) + % [(5 +1)In <a> + I (C‘Q - 1>} L (29

Thus, the solutions are of the form

3/2 3/2
3 3
Uy kB ~ Are T + Age o

(£) 7 (5-1)°
(2.25)

where A1 and Ay are constants. We see that for = > lthe wavefunction oscillates

2

. 2 3/2
andfor - < litdecays/grows. For the former case, exp (—i—z% (2—2 - 1) )corresponds

. . a2 2 3/2 . .
to a contracting universe and exp (—Z;‘T*ﬁ (“ - 1) )an expanding universe.

=
Notice that this expression suggests that we should consider s = —1 rather than
s = 0asone naively expect.

Now that we argued that we can actually find a classical spacetime, let us try to
actuaﬂy solve the WdW equation without the semiclassical approximation. We write
the equation as

0? s 0 972 o2 a?
—V4+-——V—-——(1-= | ¥=0 2.26
9a2 " ' ada 4 4 ( a2> ’ (226)

*

where £, is the Planck length. Since the scale factor has units of length the new vari-
able o = a? has units of area. For ¥(a, ) = (0, ¢), the equation becomes

¢,,+1+s 972 <a

! _— 1 = O = 62’ * — 27 227
20 ¥ T 1602 \ o )1/1 C =l =t (22D
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and ¢’ = 0y1p. We can simplify the expression further by setting

(2

(=—-1 4o,9)=f(Q) (2.28)

Ox

Notice that ¢ = ((a, ). We obtain

$f+2(1;fl)(i+m2cf=o, K = 3;2*. (2.29)
For s = —1 we equation becomes
& )
qeaf =~k (2.30)
and the solution is given in terms of Airy’s functions
Foer(0) = c1A (—n2/3g> + eBi (—,i?/%) . (23D)

Physically we expect that 0 > 0 and therefore { > —1.1In ﬁgurethe functions are
plotted for & = 1and ¢ > —1. The functions oscillate for ¢ > 0. The Ai function

Figure 2.2: Plots of the solutions. In the graphic x stands for —K2/3¢ not a.

decays from ¢ = 0 toward {( = —1 and the Bi function grows from ¢ = 0 toward
¢ = —1. Theregion —1 < ¢ < 0 is the classical forbidden region since from

(=——1, (232)

we see that 0 < a < ay, compare with ﬁgure Thus, for 0 < a < a,, the Ai
function grows and the function Bi decays. We stress that the functions and their

derivatives at ¢ = —1 does not vanish. However, the partial derivative with respect
to the scale factor vanish! Indeed:
0 0 Ofse_ 2a
— fe=—1 = —C Jo=-1 = — x const. = 0. (2.33)
da a=0  O0lmg  OC J=q  ifamo
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For ¢ > 0 and & fixed, we havd]

ﬁ:NC)“JVGMJM€U4[ﬁcDS<§KCW2—-Z>-—Czﬂn<§KCw2—-Z>}
(234)
The same result is obtained for ¢ > 0 fixed and k >> 0. This is the semiclassical limit
since k > 0 as £, — 0. Since — sin(z — 7/4) = cos(z + m/4), we can write

1
fo=—1(C) Rl f6CI
X (cle_ig -+ CQGi%)e+i%H€3/2 + (cle’% + CQe_ig)e_%“CS/Q} .
(2.35)
Due to the fact that 32

2 35 lai (d

z - _1 2.36

3"¢ n3x \ a2 ’ (236)

we recover the WKB approximation given in equation ([2.25)).
Now we face the fundamental problem: how do we set ¢1 and ¢o?

As discussed for the radial wave function, to ensure normalization, we will search
for regular solutions at = = 0 that decay at infinity. In our case, we find that both
solutions are regular at { = —1 and decay for ¢ — co. The Airy functions are not
square integrable in the range ¢ € [—1, oo)ﬂ

On the other hand, a general solution predict a superposition of expanding and
contracting universes. In an ordinary quantum, it is standard to interpret that the
wave function “collapse” due to a measurement. Of course we are assuming that the
wavefunction is normalizable and thus the wavefunction corresponds to a probability
amplitude. Moreover, the measurement is carried out by degrees of freedom outside
the system. In our case, the wavefunction is not normalizable and external observers
cannot (or don not) exist.

Regarding the non normalizability, we recall that in ordinary quantum mechanics
these type of states are encounter in a scattering problem‘ ‘We make sense of these
states with the aid of the probability current and its conservation. In our case, we find

from the WdW equation

df*  .dfy _
(f ac — dC) = const. (2.37)

For the solution we get

— k23 [(c1e5 — ce2) Al x Bi' + (cjca — e1¢5)Al’ x Bi] = const.  (2.38)

*For the expansions of the Airy functions see “Special functions and their applications" by Lebedev.
"Notice that only Ai(z) is square integrable in the range z € [0, 00), see e.g. Airy Functions and
Applications to Physics by Olivier Vallée and Manuel Soares.
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The solution is found for azero constant and ¢1 ¢ = ¢fca. The resultimply ¢f|ca|* =
|c2]?¢ and thus we can only consider the constants to be real. Hence, the wavefunc-
tion must be real.

Recall that for a scattering problem one usually consider scattering states , linear
combinations of time independent plane waves at given energy, and thus they are not
normalizable. However, the probability current gives a method to compute the re-
lation between the coefficients and find physical answers. Consider the problem of
a particle beam arriving from & — —oo0 hitting a finite barrier located near z = 0.
The incoming wavefunction is a superposition of the source and reflect waves, i.e.
ce™™ 4 p(ky)e~*0% and the outgoing or transmitted wave ¢(kq)e™***. The ampli-
tudes (ko) and (ko) are the reflexion and transmission coefficients respectively. The
probability current and its conservation gives |c|* = [r(ko)|?* + |t(ko)|?. Hence, we

can write
| (ko) [? |t (ko) [?

p="000 0 1o poy b (239)

P. =
s |C’2 9 t ‘0’2 )

Interpreting P, and P as conditional probabﬂitiesﬂ of reflexion and transmission,
we see that scattering states can give us physical information. The reason why these
states can do that is because a normalizable wavefunction can be constructed as a wave
packet of scattering sates. For z — —o0 and x — 400, we will have

e + by = / dk A(R)(c(k)e™® £ r(k)e=), 1y = / dk A(k)L(k)e*e
(2.40)
Then, if A(k) sharply peak at k = kq,we obtain the scattering states.

Motivated by the above, let us consider the two simplest cases for ¢; and ¢y real:
i) o = 0andii) ¢; = 0. Thus we consider

_ AR _ Bil-r"2()

Uy = = 241
AT A2 TP T U BI(RR) (24D)

Atbest, |¥|? can be interpreted as a conditional probability (density.) Let us consider
the event of the creation of the universe at { = —1 and interpret its probability to
be [U(¢ = —1)|% Then, the conditional probability that it has its classical form
(¢ > 0) given that was created at { = —1is |¥|%. Since the universe has its classical
form because it was created at ( = —1, the conditional probability can be naturally
be interpreted as the probability of the universe being created.

The behavior of both wave functiond/|are summarized in table 2.1]

Hence, the conditional probabilities are

W42 ~ T35, [T~ e sn, (2.42)

°See appendixfor the justification of this interpretation.
"For ¢ < 0and k fixed, we have fo— 1 ©)

_2,(_r)3/2 2, (_~\3/2
- \/ﬂf/‘61<7<)1‘/‘4 [%e 5rOTT 4 gyt }
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(k0 (>0
2, _2,.(_03/2 z
Uy |~ ﬁe*?ﬁe 31(=0) ~ cl%e*a"‘cos (2k¢3/2 - 1)
2 2 2
Up ﬁe*?ﬁe*?{(’og S~ —ﬁe*?‘&sin (2k¢32 - 1)
Table 2.1: Behavior of ¥ 4 and ¥y
Working in a system of units in which A = 1 and A = 1, we have
1 (2.43)
K= , .
2V(p)
and thus . .
(W42 ~e™3V0,  |Up°~e 370, (2.44)

On the other hand if we work in units i which £, = 1 and since we obtain de Sitter,
we obtain

I 1
“:fK‘ (2.45)
Then 4 19
§/€ = ZTﬂ- = 7T£2. (246)
Thus, we can also write
(W A2 ~ et T2~ e (2.47)

The conditional probability for W 4 is enhanced for large £ (small but constant V(¢)
or small A) and small £ (large but constant V() or large A) for ¥ . Consider a
potential given in ﬁgure The regions around the points O, 0’, Q, Q' are approx-
imately flat, i.e., constant. Then, ¢ is approximately constant in each region. Then,
W 4|? is enhanced for the points @, Q' compared with O, O’. Moreover,
among the pair Q, @', the best option is Q. For | ¥ 5|?, the points O, O’ are preferred
compared with @, Q" and among the pair O, O, the best option is O'.

we see that

Since the physical scenario is the creation of a universe, we should expect that the
potential should be at the lowest value possible. This is of course is a purely theoretical
prejudice. Following this reasoning, we then should discard the solution W p since for
Q the conditional probability is small. Hence, we arrive to the conclusion that W 4 is
the best solution and we expect £ to be large.

Let us study W 4 in more detail.

The metric of the expanding universe can be written as

72 1
ds? = —dt? + Z(eZt/£+2+e*2t/Z)ﬁ(dp2 +p2d03), t>0. (248)
1+ 4%)
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o o

Figure 2.3: Example ofa potential for the inflaton.

Let p = 2p and consider £ — oco. Then
ds? ~ —dt® + 22/fAx? t > 0. (2.49)

The spatial geometry becomes flat. For the contracting universe we just consider
—oo < t < 0. It remains to discuss which universe (expanding or contracting) is
selected. The problem is basically how to overcome the fact that we cannot assume
the “collapse” of the wavefunction.

The simplest possible solutionisto pick one possibﬂity and define that solution as
the wavefunction of that universe. This seems ad hoc but notice that the semiclassical
approximation tells us that the two universe do not interfear with each other.

From now on, we will focus on the expanding universe.

211 Path integral representation of Uy

Let us now deal with a different situation. Consider the euclidean gravitational action

Telgm] =~ — / A /G(R - 2A), (2.50)

for compact manifolds, i.e. manifolds without boundary. The equations of motion
are R, — %Rgu,j + Agu = 0. We search for solutions that satisfy R, = Agy
with A > 0. Then, the equation reduces to R = 4A. Consider

ds? = (2d03. (2.51)
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Then R = 12/* and thus A = 3/¢2. Therefore, S} is a solution. The on-shell

action result

W 3 27/2 YA
I = — Area(S%) = — 2 =——. 2.52
B= "gray e ) = e T G (252)
The key point to notice is that
I*
=1
%

This is very interesting since ™ corresponds to the semiclassical limit of the path
integral

Iplgpv]
/Dg,“, e R (2.54)

This suggests that W 4 may have also have an euclidean path integral representation.
This is strange since gravity deals with Lorentzian manifolds. In order to shed some
light to this possibility, consider the metric of Szl

ds? = 2(dy? +sin? dQ3), 0<1p <. (2.55)
The equator is given for ¢ = m/2. Let ¢ = Y + /2, then

ds? = £2(dyp? + cos® dQ3), —g <y < g (2.56)
Now let 9 = ¢4) to obtain
ds? = do? + £2 cos?(9/0)d02, —ge <9< ge (2.57)
If we consider the analytical continuation ¥ = it we get
ds® = —dt? + £2 cosh?(t/£)d03, (2.58)

which is the metric of dS*. Hence, we conclude that the metric of the euclidean
gravitational action Sk associated to W Aﬂ must be in general complex in order to
reproduce the classical universe. To be more precise, by a complex metric, we mean
that the time coordinate must be complex with a scale factor always real. Let z be the
complex time. Then, the line segment is of the form

ds? = dz? + a%(2)dQ3, (a(2))* = a(2). (2.59)

Now, let us consider a Dirichlet boundary problem for the complex metric given
above. Then, the problem reduces to a Dirichlet boundary problem for a(z). The ac-
tion is considerer to be the Einstein-Hilbert action plus the Gibbons-Hawking-York
term. To obtain this action, first consider the Lorentzian version

1 aa’ A 4

®Recall that the action I is related to | ¥ 4 2.
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Then, we consider Ndt = —i/N'dz to obtain

o a (da)? A 5
SL—+l/dZ [_N<dz> —NG+N3a]

Then, the euclidean action corresponds to

1 a /da\? A
Sg=— [dz|——(— ) — “Na3|.
E 2)\/Z[N(dz> /\/'a+3/\/a]
We see that e#S1 = ¢~ 755 and the line segment is of the form
ds? = N(2)d2? + o%(2)dQ3.
The constraint and the equation result

<1 da>2_1_A , 1d?a 1dadV

A 2
N 3% 4d? sl 3V
For N/ = 1 result

%2_1_éa2 1@___é
dz/) 377 adz2 3

For A = 3/£2, we see that
a = {sin(z/4),

is a complex solution. Then, the on-shell action result
N 1 a’

_ =T 0<7< 34
TT\e=m+it 0<t<iy’

Consider the path  to be

Then we see that

[ tsin(7/0) 0<a</?
¢ = Ccosh(t/l) £ <a<{lcosh(ty/l)’

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

In geometric terms, this corresponds to glue half of Szl witharegion (0 <t <ty)of
dS*. Thisis depicted in ﬁgure Recall that the constraints change the boundary

problem to an initial condition problem. The initial condition now traduces in the

euclidean region where

da

a(t =0) =0, E(T

=0) =+1.

(2.70)
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Figure 2.4: Gluing of half Szl with the upper half of dS%.

Then, the final state is located in the Lorentzian region where t = ty, ie. the path
ends at ¢ and thus there is a boundary. Evaluating the on-shell action, the real part

gives
St 2
- R <h> = —i-gfm, (2.71)
and the imaginary part is of the form
- ok = —ﬁ du (cosh® u — cosh u) (2.72)
h AR ’ '
0

where u = t/{. The integral gives
uf
/du (cosh®u — coshu) =
0

du coshu(cosh? u — 1),

o\s

uy
d(sinh ) sinh? u,

= Zsinh? uf,

I
w )—‘O\

inh
= y(cosh2 up — 1),

1
= :I:g(cosh2 up — 1)%/2,

3/2
1 (af /
ST A ,
3\ a2

1 32
= iggf/ . (2.73)
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Therefore o )
E\ _ 3/2
5 <h) = Fongl? 274)
Hence, S
jo 2 2 32
P —l—gh/{ F zgﬁgf . (2.79)

In order to reproduce the WKB approximation for an expanding universe we con-
sider only the + result. We conclude that

SE‘,+ 2, .2 3/2
Uyme ~h =el 3R i5RG (2.76)

Hence we see that the wavefunction can be interpreted as

1 1 gx
U li D “79E ~ 1B, 2.77
o iy [ Dot ~ e @7

where the sum is over all the possible euclidean solutions that extremize the action, i.e.
the sum over the saddles. This is analog to the procedure of finding the ground sate of
an ordinary quantum mechanical problem via an euclidean path integral. In appendix
this is discussed in detail for the harmonic oscillator. This simple example show us
that the euclidean path integral is a mathematical prescription to define the ground
state.

Hence, for a general prescription, the sum of saddles is over complex geometries
(complex in time) that in the euclidean region are compact and that in the real time
region reproduces a universe at some particular time, i.e. ty. With this picture, we see
that the problem is a one-boundary problem of spatial real metrics with the boundary
defined in the Lorentzian sector at ¢ y. The one boundary problem is actually refer as
the no-boundary proposal by Hartley and Hawkinﬂ The discussed complex geome-
try is the prototype for all no-boundary solutions. It corresponds to a specific saddle.

On the other hand, since a boundary problems are changed if constraints are in-
volved, our problem can be interpreted as an initial condition problem. If we set the
boundary, then the task is to find the complex geometries that will give us the final
state. Of course, we seek for a particular class of geometries of the form given in equa-
tion . Inthe euclidean region the complex geometry must satisfy a(z = 0) = 0.
Then, the constraint for general N indicates that for a(z = 0) = 0, we must have

ﬁ%(z = 0) = +1. Thus, from the results of the prototype, we must consider

NI- % (2 = 0) = +1. Hence the path integral is of the form

/ AN / Dac #5eNal (2.78)

The path for the ordinary integral for N must be determined.

°See Hartle, T Hawking, S. (1983).“Wave function of the Universe". Physical Review D. 28 (12):
2960. Don Page called the no-boundary proposal a one boundary proposal injarXiv:hep-th/0610121,


https://arxiv.org/abs/hep-th/0610121
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So far, the path integral representation of W 4 has been build with only gravity.
If we introduced the inflaton field, which its goal is give a dynamical nature of the
cosmological constant, the initial step is to consider the euclidean action

B a (da\®> N @@ (dp\? 3
SE—/dz [_QAN <dz) _2)\u+2/\/’<dz> +NaV(e)|, (2.79)

where now ¢ is in general a complex field. The equation of motion for this field is

d?>¢ _1dady

— 43— _Vy' =0. 2.80
dz2 + adz dz (2.80)
Again, we consider solutions for a nearly flat potential. Then, the equation at z = 0,
reduces to
d?p da dep
a(z:O)@(z=0)+3£(z:0)£(z:0)zO, (2.81)
which gives
de
—(z=0)=0. 2.82
40~ (252)
Then, we see that p(z = 0) is a free parameter, ie. an approximately a complex
constant.

The wavefunction that includes the inflaton with the complex geometry depicted
in figure2.4|is called the Hartley-Hawking wavefunction W 7.

The euclidean path integral representation proposal has faces several problems.
Choosing a particular saddle with specific initial conditions may seem ad hoc. It is!
But is a theoretical proposal, so its predictions must contrasted with experiments (if
possible). The issues that we are now going to concentrate are purely theoretical:
general relativity is not renormalizable and the euclidean path integral is not bounded
from below. These issues (if any) are encoded in the dynamical part of the proposal,
Le. the action.

In real time, the Lagrangian of the gravitational action has been taken tobe £ =
ﬁ (R—2A) (let usignore the inflaton). If we want to want to quantize the theory
in a quantum field theory approach, we split the metric as g, = g +v327G Ny .
Then, for small G, hy, can be interpreted as the classical fluctuations around the
background g,,,,. Let us consider A = 0, then the background is flat and the result-
ing action corresponds an infinite (two) derivative expansion of h,,,, and the terms
(schematically) are proportional to (vGn)™/Gnh" "1 (Oh)? where n = 2,3,...,

ie.

S~ / dlz T;G;ﬁh"_l(ﬁh)? _ / Az ((9h) 2+ /G h2(Oh)+ G B3 (Oh)2+. ).
(2.83)
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At quadratic order in hy,, ie. n = 2, the action does not depend on G. Thus
induding the infinite terms, we see that the ones for n > 2 are suppressed. The
field A, can be thought as the generalization of the spin I one massless gauge field
A, of electrodynamics and it is referred as to the graviton ( massless with spin 2).
The gauge transformation for A: A, — A, + 9,6 corresponds to an infinitesimal
diffeomorphism transformation for hyy: hyy — hyy 4+ 0,8, + 0,y Forn = 2 the
classical vacuum equations of motion (in some gauge) are —Ah,,,, = 0 and thus we
have wave solutions. These solutions are the gravitational waves.

If we now consider a non-vanish cosmological constant, we will obtain the same
result but now the action has another contribution of infinite terms proportional the
possible contractions of hy,,, with itself and the background metric. In this second
expansion, one obtains a term of the form A (hy, — 5w 9" hpo )R* . Naively we may
interpreted it as a mass term but it cannot be since it would break diffeomorphism
invariance.

Let us set A = 0 again. By writing f,, (z) = e, (k)e™*® we find that each
2

e
interaction vertex has a factor of GNT k2 (of course we only consider n > 2). If we
want to compute quantum correction to the graviton amplitudes we will face diver-
gences for large momenta. This is not problematic. The standard model of particles
phases the same issue. The difference is that by the addition of a finite set of countert-
erms in the action, these UV divergences are removed. For the case of the graviton,
we will need infinite set of counterterms. So we say that gravity, by these we mean
the theory of the graviton, is not normalizable. This is not a monumental drawback
since it makes physical predictions at low energies, i.e. large distances compared tothe
Planck length. Thus, we consider it to be an effective field theory. This is the main
point. Then, in this point of view the Lagrangian ﬁ (R — 2A) should consider

also all possible Riemannian invariants such as Gy R? and so orﬂ

For the no—boundary proposal, notice that we recover the classical spacetime via
the semiclassical approximation. Mathematically, this corresponds to the saddle point
approximation of the euclidean path integral. Since

exp (‘izSE) — exp (—Wém /d4:1;\/§(. . .)) L (289

we see that the weak field limit G — 01is compatible with the limit A — 0. Hence,
U 7y contemplates only the leading contribution of the weak field limit. This is not
aproblem. Since £ is the characteristic length of the system and £, = v/G'nh, thenin
the effective field approach this means that the description should be valid for £ > £,,.
This is indeed true. We have argued that, via the conditional probability, £ should be
large.

"See Introduction to the Effective Field Theory Description of Gravity arXiv:gr-qc/9512024 by
John F. Donoghue and also Effective Field Theory, Past and Future |arXiv:0908.1964 by Steven Wein-
berg.


https://arxiv.org/abs/gr-qc/9512024
https://arxiv.org/abs/0908.1964
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Regarding the conformal problem, consider the Weyl transformation g, (z) =
Q2(2) gy (x). Then, we obtain that

Vdet GR(§) = /gl R(g) + 6V,QVFQ — 6V, (QVHQ)]. (2.89)

So that the euclidean action, schematicaﬂy is of the form
Selg) ~ Sela) - [ V3V.0V"0. (2:86)

This means that e~ #5209 can grow (rather than decay) for large values of Q. The
way to get around this problem is to recall that the no-boundary prescription is a
prescription to define a path integral representation of the wavefunction. Moreover,
it is used only in the semiclassical approximation and therefore we focus only on the
saddles. It does not have the goal the make euclidean gravity theory a well defined

theoryﬂ

Now we are in position to discuss the phenomenological triumphs and issues of
UyH.

"Nevertheless some proposals to solve this problem has been suggested in: “Path integrals and the
indefiniteness of the gravitational action", Nuclear Physics BI38 (1978) 141-150 by Gibbons, Hawking
and Perry, “The path integral measure, conformal factor problem and stability of the ground state of
quantum gravity", Nuclear Physics B341 (1990) 187—212 by Mazur and Mottola and more recently in
“The Canonical Ensemble Reloaded: The Complex—Stability of Euclidean quantum gravity for Black
Holes in a Box", J. High Energ. Phys. 2022, 215, arXiv:2202.11786 by Marolf and Santos.


https://arxiv.org/abs/2202.11786
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Chapter 3

Phenomenology

Let us start from scratch and consider the equation (no A)

1
Ry = 59w R = 87GN T (3.)

If we apply this equation to the universe, all that can be inside of it is modeled as a
fluid. Like air molecules in a vessel. Notice that planets are basically a point in this
cosmological fluid. Consider now

1
VH(Ru — igWR) =81GNVH T, (32)

By construction (due to metric compatibility) the right hand side is equal to zero and
thus we see that the energy-momentum tensor is conserved, Le. V#T,,, = 0. Notice
that equation can be written as

1
R, =87Gn (TW — 2gWT> , T =g"Th. (33)

The metric ansatz id]

2

1 — kr2

ds? = —dt* + a*(t) < + erm) : (3.4)

and the energy-momentum tensor is consider to be a perfect fluid. Then we have
Too = p, Ty = gijp, Toi =0, (3.5)

where p is the energy density and p the pressure. The equation of state is assume to
be p = wp. The trace and the conservation of T}, gives

T =—p+3p, g =31+ w)g. (3.6)

IBy the way this metric is referred as to the Friedmann-Robertson-Walker (FRW') metric.

35
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Then, equations to solve are

a\*> _ 8Gy
a N 3 P
_47rGN

- 3
3 (p+ 3p),

= 304w 37)

ISERSIRSERSH

Recall that the first equation is the constraint. In order to solve the third equation,
let g the time of today and thus the solution is

a —3(14w)
p(t) = po ((t)> , (3.8)

ao

where po = p(to) and ag = a(tp). Cosmologist use the Hubble parameter defined
as

H(t) = -, (39}
and thus Hy = H (o) is its value today. The remaining equations become

&G k : k
= 7T3pr?, H=—-4rGny(1+w)p+ —. (3.10)

H2
a?

For a realistic model of the universe, we should consider a collection of perfect fluids
and thus the equations to solve are

8GN k . k
=50 H=—anGy} (+wipit 5 (1)

(2

H2

where

a —3(1+w;)
o(t) = Zpi(f), pi(t) = pio <CE?> . (312)

The constraint can be written as

UL 1) . (3.13)

k= (aH)? < sgz 0
8GN

Notice that aH has dimensions inverse length and “3774
ergy density. For the later we define the “critical” energy density

dimensions of inverse en-

_ 3HZ(t)

e(t) = )
0c(t) S7Cn

(3.14)

and thus

k= (a(t)H(t))2 < olt) _ 1) . (I5)

Qc(t)
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Then, the co-moving Hubble radius is defined as (a(t) H (t)) ! and in order to make

contact with observations the dimensionless density parameter is defined as

() = 20 (3.16)

The constraint takes the form

1 2
k= (W(t))_l> (Q(t) — 1). (.17)

Notice that the left hand side is time independent. Then, for any two times g and
t1, we will have

<(a1Hll)1>2 (i —1)= <(a0HlO)1>2 (Q —1). (3.18)

This is just a consequence that the topology does not change. Suppose that that g is
measured. This corresponds that we know H, g and g9 = > _; pi.of | Then, there must
be a tuning of parameters at ¢.

Now, there is a scenario in which today we can have g = 1 or more realistic
Qo ~ 1. This means that g9 & 0.0 and k& =~ 0. Then, we would have

2
<(a1H11)_1> (@ —1) ~0. (3.19)

On the other hand, we must solve

H~ —47Gy Z(l + w;) ;. (3.20)

)

In order to do so let us consider the ansatz

at) = ag (;)5 . (3.2D)

£\ 2 " —38(1+w;)
(@) e e

where G
¢ = 3 (1+ wi)p@oto. (323)
*Due to scale invariance in the spatial part of the metric, we can always set ap = 1. Here, will

keep the factor ag with the understanding that is not a parameter to be measured. On the other hand
knowing these quantities is not a trivial task. Apart from the actual measurements it must define what
kind of fluids are in the universe.
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Let us consider tree type of fluids: dust (wq = 0), radiation (w, = 1/3)andastrange
fuid with (w, = —1). Then,

" -2 ¢ —38 " -4
B (to) ~ Cq <tO> + ¢ <to> . (324)

We see that the ansatz is suitable for ¢t < ty. For t < t( radiation dominates and
thus 8 = 1/2. Hence, for t < to we have that o(t) ~ p,(t) and

os() s momm ) eomor ()

Notice that this universe faces a singularity in the past at t = 0. Thus, the solution
can be trusted for t > t,, where t,, is Planck’s time. For ¢; = ¢, we obtain
tl(szp _ 1 ~o0. (3.26)
p
Since t, ~ 5.39 x 10~* this imply that [, — 1| ~ 10~* X with x > 0. This is
an extreme tuning!
On the other hand, notice that at early stages the strange fluid does not contribute
but fort > tg we see from that it will be the only source. Then, for w = —1
the density is constant and thus @ & p,,0, where s f denotes strange and is a positive
constant. Assume that now we start with

1
R, — §QWR + g = 81GNT . (327)
Then, we interpret the cosrnological constant as a source, iL.e.
A
A
= - . 3.28
v 87FGN Guv ( )
The equation result
1
Ry — ~guwR = 87GN (T + T, (329)

2
where T},,, includes dust and radiation. The cosmological constant as a fluid will give

that
A

= 8nG N
If the strange fluid is the cosmological constant, then A > 0. The constraint for
t > tg takes the form

PA (330)

H?>~ — (3.31)

+4/A/3t

and since the universe is expanding we obtain a ~ e , le. it is exponentiaﬂy

expanding.

The whole scenario exposed above corresponds to out current model of our uni-

verse called the ACDM modeﬂ In this model, dust stands for ordinary matter and

?See arXiv:2105.05208| for a detail discussion of this model.



https://arxiv.org/abs/2105.05208
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dark matter. The strange fluid adjudicated to the cosmological constant A is referred
as dark energy . Hence, its future behavior resembles a de Sitter spacetime with large
¢, compare with equation . In summary, ignoring the singularity at ¢ = 0, we
have
etVABt ¢ >ty (Dark energy domination)
a(t) ~ 23t <ty (Matter domination) - (332)
t2 t <ty (Radiation domination)

In the far future, the universe will be a very lonely place. A cartoon of the ACDM
model is depicted in figure Notice that for FRW universe, space is completely

t>to

< Dark energy domination

Matter demination

Radiation domination

Il
o

t

Figure 3.1: ACDM universe

homogenous and isotropic, this is because the spatial line segment is R3. Stricdy
speaking, this would mean that there would not be galaxies, star, planets, etc as we
have measured. So we spect that at large enough scales, the universe should become
statistically homogeneous and statistically isotropicﬂ In the boundary of radiation
domination and matter domination (photons decouple}, the cosmic microwave back-
ground (CMB) was created and gives a snapshot of the universe at that stage. The in-
credible measures of CMB indicates that is almost perfectly isotropic but with small
anisotropies in its temperatureﬂ These fluctuations, at linear order, are well described
by a Gaussian random process. This is nice since it fits with the (classical) statisti-
cal mechanical notion of fluids and the assumption that the equations are sourced

*Notice that statistics is involved in two ways: as the usual way in an experiment or data analysis and
in a (classical) statistical mechanical way.
’See arXiv:1303.5083,


https://arxiv.org/abs/1303.5083
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by them. Moreover, these anisotropies are thought to be related with small pertur-
bations, around the FRW background, that corresponds to the seed that forms the
large scale structure of the universeﬂ However, there is no fundamental explanations
of the Gaussian profile and its origin. The ACDM model is consistent with current
observations but at the same time indicates the existence of dark energy and matter.
Our current knowledge, i.e. the standard model of physics, has not yet establish the
existence of “dark” particlesﬂ On the other hand, dark energy has interpreted as the
cosmological constant but no dynamical origin has been observecﬂ

Returning to the flatness extreme tuning, notice that de Sitter with large £ also
suggest that maybe thereisa dynamicaﬂy possibﬂity inwhichk ~ 0 by amechanism
before radiation dominance. From

1 2 1 2
() @ 0= () @ -0 o)
this would imply that there is an epoch for which the left hand side vanishes and thus

Qo ~ 1 which is in agreement with observations. No tuning required. Of course the
mechanism must end in order to transition to the radiation dominance epoch. The
fluid that produces this mechanism must then convert to radiation.

This fluid is assumed to have a equation of stateas p = wpandthus p = pea 300,
Since
k= (aH*)(Q 1), (334)
we demand that = 1, so p = p.. From the definition of p,, we get
G
H? = 7r3 Ny (3.35)
We also have .
H = —47Gn(1 + w)p. (3.36)
From the above expressions we obtain
H 3
where € codifies the nature of the fluid. The first expression combined with p =
p*a_3(1+w) gives
8tG
Q% = ”3 N a2, (338)
Taking a derivative we get
G
§= 0N (1 — €)peal™2. (339)

3

This subject is called: cosmological perturbation theory. See e.g. arXiv:hep-th/0306071vI|
"For a current review see arXiv:2104.11488,
%For a review see arXiv:1209.0922,



https://arxiv.org/abs/hep-th/0306071v1
https://arxiv.org/abs/2104.11488
https://arxiv.org/abs/1209.0922
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Again, the de Sitter lesson with large £ is that this epoch must satisfy ¢ > 0. This
epoch is called inﬂatiorﬂThe condition @ > 0 imply € < 1 or equivalently w <
—1/3. Notice that for € = 0, ie. w = —1, we again recover de Sitter. Without
any surprise we consider the inflaton field ¢. We already now that the potential must
have regions that is nearly flat (de Sitter approximation). But now we also now that
inflation must end (¢ — 1)and thus the potential must go (slow roll) to zero. Around
the zero potential we have a transition to the universe dominated by radiation. A

prototypical potential with slow roll is sketched in figure

\)

Transition to
radiation dominace

|

|

|

Inflation starts Inflation ends

Figure 3.2: Slow roll potential

For these type of potentials we see that when inflation starts the potential term
dominates and when it ends the kinetic term dominates. Then, the kinetic energy of
the inflation converts to give the radiation fluid.

This is strange from the point of view of the no-boundary proposal. We expect
that inflation should start from the bottom of the well not on the plateau‘ Moreover,
we need a lot of inflation to produce the current structure in the universe{ﬂ

Hence, we see that W g7 is not naturally compatible with slow-roll inﬂatiorﬂ

However, inflation models faces phenomenological and theoretical issues. The
slow roll inflation predicts small non-Gaussianities and thus more accurate measure-
ments of the CMB will be required to validate the theoryEl On the theoretical side,
inflation moves the ACDM singularity back into an indefinite pastEl Itisonlyitisa

°For a more detail motivation of inflation and its consequences see arXiv:0907.5424, One of the
outstanding features of inflation is that as a semiclassical quantum theory, the origin of the seeds of the
cosmological perturbations that would lead to the large scale structure of the universe are completely
quantum.

"For details on the physics, seelarXiv:0811.3919,

UThere is a particular solution of this issue, it demands to take into account the presence of the
observer in the conditional probability. It is a solution coming from the interpretation of quantum
mechanics applied to the universe rather than a dynamical solution. See arXiv:1503.07205, “Volume
Weighting in the No Boundary Proposal”|arXiv:0710.2029vI by Hawking and “The no-boundary mea-
sure of the universe", Phys‘ Rev. Lett. 100, 202301 (2008), arXiv:0711:4630, by Hartle, Hawking and
Hertog.

2See Planck 2018 results. X. Constraints on inflation!

BSee arXiv:gr-qc/0110012 and arXiv:gr-qc/9612036vI|


https://arxiv.org/abs/0907.5424
https://arxiv.org/abs/0811.3919
https://arxiv.org/abs/1503.07205
https://arxiv.org/abs/0710.2029v1
https://arxiv.org/abs/0711.4630
https://arxiv.org/abs/1807.06211
https://arxiv.org/abs/gr-qc/0110012
https://arxiv.org/abs/gr-qc/9612036v1
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reasonable semiclassical quantum theory but tells us nothing about the quantum ori-
gin of the universe. W7 does and therefore there is a possibility that the potential
used in slow roll inflation is too naive. Moreover, the specific saddle that produces
W i give the same prediction of tensor perturbations as in inﬂatiorﬂ

Notice that slow-roll inflation seems to prefer (tunneling) solutions as ¥ But
in our interpretation of probability, this type of universe has low likelihood to exist
since £ has to be large‘

For a review of the no-boundary proposal (and its issue with slow roll inflation)
see the latest comments by Maldacena inarXiv:2403.10510v]| and references within.

I end this note indicating that ifa dynamical solution to the incompatibility of
the no-boundary proposal with slow roll inflation is given, the (classical) big bang
singularity will not exist.

¥ SeelarXiv:2303.08802,

PThe solution is plotted in ﬁgure we see that it resembles a wave function that tunnels a bar-
rier. In this case it corresponds to the part of the potential Uesr in the no-classical region, see figure
|ﬁ| and recall that this region corresponds to —1 < ¢ < 0. For Vilenkin’s tunneling proposal see
arXiv:1808.02032v2 and speciaﬂy “Quantum cosmology and the initial state of the Universe" Phys. Rev.
D 37,888 1988.


https://arxiv.org/abs/2403.10510
https://arxiv.org/abs/2303.08802
https://arxiv.org/abs/1808.02032

Appendix A

Conditional Probabilities

Consider an experiment that has two possibles outcomes: 1 and |. Then, the sample
space is 2 = {1, [ }. The possible events, the subsets of the sample space, are {1, ]},
{1}, {4} and {0}. The cardinality of the set {1, ]} is 2 and for the remaining is L.
Then, the probabﬂity of the sampie is space is defined to be

P(Q) =1. (A

This is the normalization axiom.

Since = {1} U {]}, which means that {1} N {|} = {0}, the additivity axiom
states that P(Q) = P({1}) + P({}}) and therefore P({1}) + P({l}) = 1. Notice

that if we relax the normalization axiom, the additivity axiom will tell us that

PUY | PUD A

P LY PATLY

Now, notice that

{tr={tn{n 4 {B={n{ni (A3)
Then, we can write

PN {TAL) | PAIEO {1 4)
Pt P({T. )

=1 (A4)

Consider the classical scattering problem of sending a stream of particles towards
a thin foil, see figure Detectors are place in both sides of the plate. The experi-
ment register that some particles are reflected and some pass through the plate. Clas-
sically we idealize the physical problem by assuming that the detectors are located at
the same distance L and that the particles are thought as tiny balls with radius 7.
Also we assume that 7}, is significantly smaller than L. On the other hand, we will
only consider detections in a narrow region along the particle beam. Ignore how the

43
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Detector

Target

g

Detector A

Particle beam generator

Figure A.I: Scattering problem. The target is a thin foil.

detector is placecl in the same spot of the particle beam generator. Then, the prob—
lem becomes a one dimensional problem. Mathematically, the assumptions allow us
to place the detectors at & — —oo and # — +o0. Therefore, the target is located
around z = 0. On the other hand, the stream of particles are assumed to carry the
same momentum pg.

Let us call {1} the event of the particles passing through the target and {{} the
event of particles reflected. We then can consider the case in which some particles

of the incoming beam pass through and other are reflected. Thus, P({1,]}) is as-

sume to exist but we do not know its value. Then, W is interpreted as the

probability that particles pass through given that both detectors record a signal and

W as the probability that particles pass through given that both detectors

record a signal. This are conditional probabilities. Then, we see that the sum of con-
ditional probabilities, do to the additive axiom, is one.

Now consider the quantum interpretation of the scattering problem. Now con-
sider the de Broglie wavelength of the particles A, instead of 7. Again L >> \,. We
also consider scattering states, which are not normalizable, and the momentum of
each particle is ko. The target is the compact potential. The coefficient of the incom-
ing plane wave is ¢ and the coeflicients of the reflected and transmitted plane waves
are (ko) and t(ko) respectively. Conservation of the probability flux gives

]r(|]z|02)|2 N !t(|l§)2)|2 . (AS)

Then we consider

P{1,41) =1el?, PAL NN = Ir(ko)l?, PUTIN {11} = It(k212->
6
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Hence, |¢|? corresponds to the probability that after sending the incoming plane
wave, there will be a reflected plane wave and a transmitted plane wave. Then, P, =

2 2 . . . e .
|T(‘IZ‘02)| , P = % are indeed conditional probabilities.
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Appendix B

Ground state wave function of the
harmonic oscillator

For a one-dimensional quantum problem, consider the probability amplitude (2, t2|21, t1).

. . S _it—t) g
Using the evolution operator U (t,t1) = e~ & 1.

(wa, tal w1, t1) = K (32, ta, 31,11) = Y (w2) 5 (1)e~ 2~ (B)

where H Yy = Entby. The propagator K has a path integral representation

:E(tg)::ﬂg
K (s, 2,01, 11) / Dar(t) e 5120, (B2)
.’L‘(t]_)—xl
with
to d 9
m (dz
Sla(t)] = /dt <2 <dt> _ V(x(t))) . (B3)
t1
Then, the amplitude can be written as
z‘(tz)—xz
(22, tolz1, t1) = / Dar(t) e St (B4)
z(t1)=x1
Consider now the euclidean version by taking t = —itg, then
(w2, tpalwr, ten) =Y n(@2)y(z1)e” (tp2=te) G (B5)
n=0
Letw; = 0and tps = 0, we get
(22,0]0,t51) an 2 (0)etE (B.6)

47
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and thus, the ground state o (22) can be computed from
z(0)=x2
volaz)oc [ Da(te) e hSelen), (B7)
z(—00)=0

where
0

2
Spla(tp)] = / dtp (’; (if;) +V(m(tE))>. (B.8)

Evaluating functional integrals (i.e. path integrals) is hard and we know how to com-
pute them only if the Lagrangian is quadratic in its variables. For this reason let us
consider the euclidean harmonic oscillator

) _m di 2+7mw2x2 B.9
E=9 \dtg 9 (B.9)

Notice that the potential is inverted and now we have an unstable maximum. The
action can be written as

0
m dx m dx m A
Splz(tp)] = ECL‘(O)@(O) - E:E(foo)@(foo) + 5 dtg 2Oz, (B.I0)
where
oL + w? (B.ID)
- dtg '
d®z. _ 2

The classical equation of motion is = w?z, and the solution is of the form

deZ,
zc(tp) = Ae*' + Be !, Since the path integral demands that 2:(—o0) = 0,
2(0) = w2 we find that the classical solution is z.(tg) = x2e“'E. Since Ox, = 0,

dz () = Wy and gf; (—00) = 0, the on-shell action gives

dtp
mw
and moreover the factor
e~ #Selee] — e*%”‘%, (B.I3)

reproduces the ground state wave function. This suggest that the path integral should
be computed by assuming

x(tE) = CL‘C(tE) + h’l?(tE), (B.H—)

where 7 corresponds to the quantum fluctuation around the classical path 2. These
fluctuations must obey 7(0) = 0 = 7n(—00). Then

0
0 2
_/mn (dx w2xc>]—|—h25}3[n].

d$c c

(BI5)
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and therefore

z(0)=z2 n(0)=0
/ Da(tp) e~ #58l(ts)] = =7 Sple] / Di(tg)e el (B16)
z(~00)=0 n(—o0)=0

For the harmonic oscillator we see that the remaining path integral must give a con-
stant. Beyond the harmonic oscillator, the semiclassical ground state can be com-

puted from the integral by taking 72 — 0. Thus we find

waemiclassical(x2) ~ Z e—%sE[ﬂCﬁ’ <B17>
7

where the sum is taken for all possible euclidean classical solutions that satisfy the

boundary data. Notice that the right hand side of

z(0)=x2

o(xa) / Dx(tg) e_%SE[w(tE)], (B.I8)

z(—00)=0

is viewed as a mathematical technique to find the ground state. The physical input
is £(0) = w2 and the action S. The euclidean time and action, together with the
boundary data corresponds to a prescription not a areal physical system.

In order to enforce this interpretation, notice that after fixing x1, ¢1 the propa-
gator K satisfy Schrodinger’s equation. By splitting () = c(t) 4+ g withn(t1) =
0 = n(t2) we find that an action with potential V() result

Slxe 4 hn) = S[x.] + B2I[n, h), (B.19)
with
7 1 h 12
— ﬂ-Q_i n 2 yym 3 ysmn 4
I[n,h)—/dt<277 2!V17 3!V n 4!V n —|—...>, (B.20)
t1
and therefore
n(t2)=0
K(z,ty,21,t1) = Aendlrd 4 = / Di(t) e nh), (B.21)
n(t1)=0

where z.(t1) = 21 and z.(t2) = x2. In the limit h — 0, we find
P(x2,t2) ~ enSleel, (B.22)

Notice that (t1) = x1 is not provided but must be fixed. Let us consider again the
harmonic oscillator. We have shown that for a classical solution of the form

x.(t) = Acos(wt) + Bsin(wt), (B.23)
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we have (o) ()
sm(wito sin(wty
A\ _ [ St *t T sl —h) 2 (B24)
B _ cos(wtz) T+ cos(wty) 2 : :
sin(w(tz—t1)) 1 T sin(w(tz—t1)) 2

Let 21 = 0, then

sin(w(t — 1))

ct) =20 —F—F——755, t1 <t <t B.25
vell) =22 g St — 1)) O 2 (B-23)
The on-shell action result S[x.] = mgxg cot(w(tz —t1)). Due to the singularities of
the cotangent function we consider the analytical continuation t = —itg and thus
we find

COt(w(tQ - tl)) = iCOth(w(tEg — tEl)). (B‘26>

From the hyperbolic cotangent function, we see that it is reasonable to consider t gy =
Oandtg; — —oo. Thiswill select automatically the ground state. With this perspec-
tive, we see that the analytical continuation is a method of regularization.

On the other hand, by setting 22 to be a general point 2 at some arbitrary ¢, we
find that the semiclassical wavefunction is of the form

,llz)semiclassical(aj7 t) o e%SE(w,tﬂBl,tl)’ (B27>

where S is the Hamiltons principal function defined as
t Lo ?
m (dz
S(z,t,x1,t1) = /du (2 <du> - V(:E)) . (B.28)
t1

Hamiltons principal function satisfy Hamilton-Jacobi equation

_ % — <$’ gj’t> . (B.29)
Which has the form
2
_§:;A§>HW) (B30)
Let us assume that S = —E(t — t1) + W(x) — W (1) and therefore
wsemidassical(x’t) - e—%E(t—tl)-&-%(W(x)—W(xl))’ (B.31)
and . )
E=o— (W) + V(). (B32)

From this we find

szmmw—wmg:i/mxmmw—vum. (B33)

1
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The classical allowed region corresponds to £ > V' and the non- classical region to
E < V. For the harmonic oscillator we get

[ 28
W(z)—W(zx1) = :I:mw/dx'\/ 02— g2 2= —, (B.34)
mw
1

where £/ corresponds to the returning points. The classical region corresponds to
22 < 2 and the non- classical to 22 > ¢2. In the non- classical region we write

Wi(z) —W(xy) = j:imw/dx’\/ x’? — (2. (B33)

After performing the integral we obtain

1 1 iz T+ V2 — 02
- 2 _p2_ = 2 _p2_ Ly ANV )
2x\/x 2961\/331 5 n (931 e _€2>]

W(z)—W(x1) = timw

(B.36)
If we consider the positive solution, and set £ = 0, z; = 0 we find
Q/)(s)ernidassical(w, t) x e_%E(t_tl)e_%I27 <B37>

where the factor E(t — t1) survives only if (¢t — 1) — oo.
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