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Chapter 1

Classical problems

1.1 Introduction

Let us consider the equation
ẍ = f(x, ẋ, t). (1.1)

If we know x, ẋ, and f with all its derivatives at some arbitrary time t0, we can con-
struct the solution of the equation. Consider

...
x = ∂xfẋ+ ∂ẋff + ∂tf. (1.2)

The right hand side corresponds to a function that depends on x, ẋ and t. This occur
for all the derivatives of x and therefore we can write

x(t) = x0 + ẋ0(t− t0) +
ẍ0

2!
(t− t0)2 +

...
x0

3!
(t− t0)3 + . . . . (1.3)

Depending on f , the sum may converge for |t− t0| < r. Recall that if r →∞, then
the series converges for all values of t. In practice, even if the solution is valid for all
t, we are interested in t ≥ t0 and this type of problem is known as an initial value
problem.

As an example, consider

f(x, ẋ, t) = −ω2x, (1.4)

with x0 and ẋ0 given. Then we have

x(t) = x0 + ẋ0(t− t0)− x0ω
2

2!
(t− t0)2 − ẋ0ω

2

3!
(t− t0)3 + . . .

= x0

(
1− ω2

2!
(t− t0)2 + . . .

)
+
ẋ0

ω

(
ω(t− t0)− ω3

3!
(t− t0)3 + . . .

)
,

= x0 cos(ω(t− t0)) +
ẋ0

ω
sin(ω(t− t0)), (1.5)
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6 CHAPTER 1. CLASSICAL PROBLEMS

for all values of t. Of course we could arrive to the same solution by directly solving
the differential equation, i.e., the family of solutions are given by

x(t) = A cos(ωt) +B sin(ωt). (1.6)

From

x0 = A cos(ωt0) +B sin(ωt0), ẋ0 = −Aω sin(ωt0) +Bω cos(ωt0), (1.7)

we can write (
x0

ẋ0

)
=

(
cos(ωt0) sin(ωt0)
−ω sin(ωt0) ω cos(ωt0)

)(
A
B

)
, (1.8)

to find (
A
B

)
=

(
cos(ωt0)x0 − sin(ωt0) ẋ0

ω

sin(ωt0)x0 + cos(ωt0) ẋ0
ω

)
. (1.9)

With these expressions we obtain the result given in equation (1.5). There are other
ways to determine A and B. Assume that we give x1 = x(t1) and x2 = x(t2) with
t2 > t1. Then we will have(

x1

x2

)
=

(
cos(ωt1) sin(ωt1)
cos(ωt2) sin(ωt2)

)(
A
B

)
, (1.10)

and obtain (
A
B

)
=

(
sin(ωt2)

sin(ω(t2−t1))x1 − sin(ωt1)
sin(ω(t2−t1))x2

− cos(ωt2)
sin(ω(t2−t1))x1 + cos(ωt1)

sin(ω(t2−t1))x2

)
. (1.11)

This problem is not longer an initial value problem. Since it is set on the interval t1 ≤
t ≤ t2 and we have data on the boundaries of the interval, it is called a boundary value
problem. In particular, the boundary data is x(t1) and x(t2) and thus the problem is
called Dirichlet boundary value problem.1

For a initial value problem ẍ = f(x, ẋ, t) we can consider the first order system

y = ẋ, ẏ = f(x, y, t). (1.12)

A state of the system is defined as the point (x, y) in a plane. Thus, the initial value
problem corresponds to specify the initial state (x0, y0) and to predict a final state
of the system at some t > t0. The answer to this question will give a curve in such
a plane that joins the initial and final state. Of course, the coordinates of the curve
Γ(t) = (x(t), y(t)) are a solution of the above equations.

For the boundary problem discussed above, we consider the state as the point
(x, t) in another plane. Since we know the initial and final state, the question we can

1We could instead have ẋ(t1) and ẋ(t2) and this problem is referred as a Neumann boundary value
problem.
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ask in this case is the curve that join this two points. Again, the curve γ(t) = (x(t), t)
is a solution of ẍ = f(x, ẋ, t). This Dirichlet boundary problem have the property
that it can be cast into a variational problem with an action defined as

S[x(t)] =

t2∫
t1

dt′ L(x, dx/dt′, t′), (1.13)

where L is the Lagrangian. The action is a functional and its domain corresponds to
the set of curves in the (x, t) plane that joins the initial and final state. Hamilton’s
principle states that demanding

δS

δx(t)
= 0, (1.14)

with Dirichlet boundary conditions, i.e. δx(t1) = 0 = δx(t2), is equivalent to de-
mand

d

dt

∂L

∂ẋ
=
∂L

∂x
. (1.15)

This is the Euler-Lagrange equation. For a Lagrangian of the form

L =
1

2
ẋ2 − V (x, ẋ, t), (1.16)

we obtain
ẍ = −∂V

∂x
+

d

dt

∂V

∂ẋ
. (1.17)

Thus, the boundary problem can be derived from a variational problem if there is a
V such that

f(x, ẋ, t) = −∂V
∂x

+
d

dt

∂V

∂ẋ
. (1.18)

We will assume that this is possible. Hamilton’s principle implies that among all pos-
sible curves connecting the initial and final state, then, the actually curve is the one
that extremizes the action, i.e. the one that solves the Euler-Lagrange equation.

So far, the plane (x, t) is an abstract space and the action has no geometrical
meaning. Moreover, we can generalized the Dirichlet boundary problem by consid-
ering x = (x1, . . . , xn) and thus the curves are defined on Rn+1. The line segment
in this space is given by

ds2 = v2
0dt2E + δijdx

idxj , (1.19)

where v0 has dimensions of velocity such that ds2 has dimensions of length squared.
In a minute a justification of writing tE instead of t will be given. The length of the
curve is ` =

∫
ds and we conviniently parametrized it using tE and thus

` =

tE2∫
tE1

dtE

∣∣∣∣ ds

dtE

∣∣∣∣ = v0

tE2∫
tE1

dtE

√
1 +

1

v2
0

δij
dxi

dtE

dxj

dtE
(1.20)
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We see that there is a Dirichlet boundary problem in which the action has a geomet-
rical nature. On the physical perspective, it seems that this scenario has no meaning.
This is not true after considering Minkowski space Rn,1, i.e. special relativity, rather
than its euclidean version Rn+1. For this reason, from we used the euclidean time tE
instead of t and thus we see that v0 = c.

We continue inRn+1 but now we further generalize the Dirichlet boundary prob-
lem. For n = 2 we can consider the problem of finding the surface that joins two
different circles, see figure 1.1. The states are know the closed curves instead of points

Figure 1.1: Illustration of the possible curves/surfaces for the Dirichlet boundary
problem.

and the action corresponds the area. Forn = 3 we consider the states to be two differ-
ent half spheres and now the action corresponds to a volume. Thus, for generaln, the
action corresponds to the n-dimensional volume that joins the (n − 1)-dimensional
area states. This generalization finds home in (euclidean) string theory.

The generalization is mathematically pleasing. Notice that the setup is based on
the fact that Rn+1 is given. The n-dimensional volume and (n−1)-dimensional area
are imbedded in Rn+1. Let us write the line segment of Rn+1 as

ds2
Rn+1 = gµνdxµdxν , gµν = δµν (1.21)

with µ, ν = 0, 1, 2, . . . n and x0 = ctE . The line segment on the volume, described
with coordinates {σi}, corresponds to

ds2
V n = hij(σ)dσidσj . (1.22)

The metric elements gµν and hij(σ) are related by

hij(σ) =
∂xµ

∂σi
∂xν

∂σj
gµν . (1.23)
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For the initial and final state, described with coordinates {ξa1},{ξa2} respectively, we
can have

ds2
Σ1,2

= γab(ξi)dξ
a
1,2dξb1,2, γab(ξ1,2) =

∂σi

∂ξa1,2

∂σj

∂ξb1,2
hij(σ). (1.24)

The action is given by

S[x(σ)] =

∫
dnσ
√

deth =

∫
dnσ

√
det

(
∂xµ

∂σi
∂xν

∂σj
gµν

)
. (1.25)

With Dirichlet boundary conditions we find that the Euler-Lagrange equations are
−∆V x

µ = 0. Let us work a n = 2 example. We parametrized the surface as

tE = σ1, x1 = r(σ1) cosσ2, x2 = r(σ1) sinσ2, (1.26)

and call σ2 = θ with θ ∼ θ + 2π. Thus we obtain

ds2
V 2 = (1 + ṙ2)dt2E + r2(tE)dθ2, (1.27)

and

S = 2π

tE2∫
tE1

dtE r(tE)
√

1 + ṙ2. (1.28)

The equation to solve is rr̈ = 1+ṙ2. A solution is r(tE) = r0 cosh(tE/r0) and there-
fore the initial and final states are circles with radius r(tE1,E2) = r0 cosh(tE1,E2/r0),
see figure 1.2.

Figure 1.2: Example for a n = 2 case.

1.2 The action for the universe

A more abstract problem is to consider a boundary problem for gµν(x) itself. From
know on we will work with real time. Let gµν(x) be the metric elements of a pseudo-
Riemannian manifoldMn,1, the line segment is

ds2
Mn,1 = gµν(x)dxµdxµ, (1.29)
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and the equations to satisfy are Einstein’s equations

Rµν(g)− 1

2
gµνR(g) + gµνΛ = 8πG

(n)
N Tµν , (1.30)

where Rµν is the Ricci tensor, R the Ricci scalar, Λ the cosmological constant, Tµν
the energy-momentum tensor and G(n)

N Newton’s constant in n spatial dimensions.
Solving these equations is not a simple task. Even the initial value problem is not
straight forward. The first step is to assume that the topology of R × Σ, this cor-
responds to a n + 1 decomposition and the formalism is referred as to the ADM2.
Without giving too much details, for the initial time t0 we must give the (spatial)
metric and the extrinsic curvature associated to Σt0 , specify Tµν and satisfy two con-
straints (later they will referred as to the Hamiltonian and momentum constraints).
Later, there will be two first order in time partial differential equations for the spatial
metric and extrinsic curvature. After solving these equations, the result must corre-
sponds to an+1-dimensional metric of a pseudo-Riemannian manifold foliated with
hypersurfaces Σt for each t.

Another way to solve, which is the way that usually we find solutions, is to make
an ansatz of the metric gµν and Tµν . Their form is usually motivated by symmetries.
The simplest example is flat spacetime, i.e. Minkowski. Let gµν = ηµν and Tµν = 0.
One finds thatRµν(η) = 0 andR(η) = 0. This imply that Λ = 0.

Since we are interest in cosmology, consider the following toy cosmological model
that satisfy

Rµν(g)− 1

2
gµνR(g) + gµνΛ = 0, (1.31)

with
ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
. (1.32)

Notice that the scale factor a(t) is dimensionless and 1/k of length squared. These
options indicate that space slices can be hyperbolic, flat, spherical. Also notice that
under rescaling of length, i.e. r → λr where λ, we have k → λ−2k and the metric is
invariant if a→ λ−1a. Notice that dr2

1−kr2 +r2dΩ2 correspond to a spatial maximally
symmetric space.

The 00 and ij components of Einstein’s equations give(
ȧ

a

)2

=
Λ

3
− k

a2
, 2

ä

a
+

(
ȧ

a

)2

= Λ− k

a2
, (1.33)

respectively. Recall that 1/Λ has dimensions length squared. By plugging the first
equation to the second equation the system becomes(

ȧ

a

)2

=
Λ

3
− k

a2
,

ä

a
=

Λ

3
. (1.34)

2For details of this formalism see arXiv:gr-qc/0703035v1.

https://arxiv.org/abs/gr-qc/0703035v1
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Notice that the first expressions acts as a constraint. Let us focus on the solutions
with Λ > 0. One possible solution is

a(t) = cosh(
√

Λ/3t), (1.35)

where we have used the length rescaling to set the coefficient to unity. Then

tanh2(
√

Λ/3t) = 1− 3k

Λ
sech2(

√
Λ/3t). (1.36)

This immediately imply that k = Λ/3 > 0. If instead we consider

a(t) = sinh(
√

Λ/3t), (1.37)

we obtain
coth2(

√
Λ/3t) = 1− 3k

Λ
csch2(

√
Λ/3t), (1.38)

and therefore k = −Λ/3 < 0. Lastly, for k = 0 we have ȧ = ±
√

Λ/3 a and thus we
have two options

a±(t) = e±
√

Λ/3t. (1.39)

By setting

TΛ
µν = − Λ

8πG
(3)
N

gµν , (1.40)

we see that Λ plays a role of a source. If the above solutions are models of universes,
they correspond to the ones in which we are not in them! Nevertheless, we can in-
terpret the solutions for the scenario in which other sources are small compared to
TΛ
µν .

For these theoretical universes, we see that in the casea(t) = cosh(
√

Λ/3t) there
is no curvature singularity. For a(t) = sinh(

√
Λ/3t) there is an apparent singularity

at t = 0. For the remaining cases, the apparent singularities are at t→ ∓∞.

For the singularity free universe, we have

ds2 = −dt2 + cosh2(
√

Λ/3t)

(
dr2

1− (Λ/3)r2
+ r2dΩ2

)
. (1.41)

Let Λ = 3/`2 and r = ` sinψ. We obtain

ds2 = −dt2 + `2 cosh2(t/`)dΩ2
3 (1.42)

which corresponds to de Sitter spacetime, dS4, in global coordinates. dSn+1, also its
relative AdSn+1, have the property that it can be taught as a hypersurface in an ambi-
ent space. For de Sitter, the ambient space is Rn+1,1. The hypersurface corresponds
to

ηABX
AXB = `2, A,B = 0, 1, . . . , n+ 1. (1.43)
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Parametrizing the hypersurface as

X0 = ` sinh(t/`), Xa = `Ωa cosh(t/`), (1.44)

with t ∈ R we find
ds2 = −dt2 + `2 cosh2(t/`)dΩ2

n. (1.45)

This choice of parametrization gives the global coordinates of dSn+1. A cartoon
of de Sitter spacetime is shown in figure 1.3. The solutions a(t) = sinh(t/`) and

Figure 1.3: de Sitter as an hypersurface.

a(t) = e±t/` corresponds to other parametrizations of the hypersurface. The differ-
ence between these cases with a(t) = cosh2(t/`), is that they do not cover all dS4.
Since dSn+1 is a maximally symmetric spacetime we have

RµνραR
µνρα =

2

n(n+ 1)
R2, R = R = (n+ 1)n/`2, (1.46)

we conclude that the singularities for the parametrizations that do not cover the hole
spacetime are actually coordinate singularities.

1.2.1 The action for dSn+1

The Einstein-Hilbert action is defined as

SEH [gµν ] =
1

16πG
(n)
N

∫
dnx

√
−det g (R− 2Λ). (1.47)

Instead of dealing with the general variation problem, let us take a short cut and con-
sider a metric on the form

ds2 = −N(t)dt2 + a2(t)dΩ2
3. (1.48)
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Here, the scale factor a(t) has dimensions of length and the dimensionless function
N(t) is known as the lapse function. We have that

R =
6

N2

(
ä

a
+

(
ȧ

a

)2

− Ṅ

N

ȧ

a

)
+

6

a2
, (1.49)

and
d4x
√
−det g = dtd3θ

√
det γNa3, (1.50)

where γab is the metric on S3. The action becomes

SEH [a, N ] =

∫
dt

[
L(a, ȧ, N) +

d

dt

(
1

2λ

a2ȧ

N

)]
, (1.51)

with

L(a, ȧ, N) =
1

2λ

(
−aȧ2

N
+Na− Λ

3
Na3

)
, λ =

8πG
(3)
N

6Area(S3)
=

2

3π
G

(3)
N .

(1.52)
Now, the total derivative does not affect the Euler-Lagrange equations but modifies
the variational problem. It is easy to see that the total derivative will give us a factor
proportional to δȧ. This is not suitable for a Dirichlet boundary condition. There-
fore, the correct action must be

S[a, N ] = SEH [a, N ]−
∫

dt
d

dt

(
1

2λ

a2ȧ

N

)
. (1.53)

The second term, in its general form, is known as the Gibbons-Hawking-York term3.

Notice that the Lagrangian does not depend on Ṅ , i.e. it is not dynamical, and
thus ∂L

∂Ṅ
= 0. The Euler-Lagrange reduces to ∂L

∂N = 0 and gives

1

N

(
ȧ

a

)2

=
Λ

3
− 1

a2
. (1.54)

The equation for the scale factor result

2
ä

a
+

(
ȧ

a

)2

− 2Ṅ
ȧ

a
= N2

(
Λ− 1

a2

)
. (1.55)

After settingN = 1, we find the same 00, ij equations for k = 1. Therefore, we get
the same expressions (

ȧ

a

)2

=
Λ

3
− 1

a2
,

ä

a
=

Λ

3
, (1.56)

3I refer to “A short note on the boundary term for the Hilbert action”, Modern Physics Letters A
2014 29:08b y T. Padmanabhanand and “Robin Gravity" J. Phys.: Conf. Ser. 883 012011 by Krishnan,
Maheshwari and Bala Subramanian for a detail discussion of this term.
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but now we are dealing with a boundary problem with a constraint. For Λ > 0 and
` =

√
3/Λ, consider the solution

a(t) = A cosh(t/`) +B sinh(t/`). (1.57)

Notice that it can be written as

a(t) = αet/` + βe−t/`, (1.58)

with
α =

A+B

2
, β =

A−B
2

(1.59)

The constraint gives 4αβ = `2. Therefore

a(t) =

(
α+

`2

4α

)
cosh(t/`) +

(
α− `2

4α

)
sinh(t/`). (1.60)

Notice how the constraint changes the boundary problem! For the final state we
consider t2 � ` and a2 = α∗e

t2/`. If we choose the initial state at t = 0, we have
that

a1 = α∗ +
`2

4α∗
. (1.61)

We can invert to find
α∗ =

a1

2
± 1

2

√
a2

1 − `2, (1.62)

with a1 ≥ `. Hence, after specifying the final state, the boundary problem traduces
to an initial condition problem4. Notice that for a1 = ` we obtain α∗ = `/2 and
therefore we get dS4 in global coordinates. On the other hand, consider the initial
condition a1 � `, then α∗ ≈ 0 for the negative root or α∗ ≈ a1.

We end this discussion by analyzing the problem in phase space. The momenta
are

p =
∂L

∂ȧ
= − 1

λ

aȧ

N
, P =

∂L

∂Ṅ
= 0. (1.63)

The Hamiltonian result
H = NH, (1.64)

with
H(a, p) = − λ

2a
p2 +

Λ

6λ
a3 − 1

2λ
a. (1.65)

Then, the action becomes

S[a, p, N ] =

∫
dt (pȧ−NH(a, p)). (1.66)

Wee see that the equation for N gives H = 0. This is known as the Hamiltonian
constraint and gives (1.54). Hence, we interpretN as a Lagrange multiplier.

4If instead we do not think of the problem as a boundary one, we will arrive at the same conclusion.
This is due to the fact that the system is the universe not part of it. Hence, the boundary problem
mathematically accommodates the physical problem and shows how it reduces to an initial condition
problem. Of course this is not just matter of elegance, quantum mechanics demand this framework.
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1.2.2 The inflaton

Let us introduce a scalar field φ, the inflanton field, with potential V (φ). The goal
is to replace the dynamics of the cosmological constant with this field. Then, to the
gravitational action with Λ = 0 we add

S = Sg −
1

2

∫
d4x
√
−g (∇µφ∇µφ+ 2V (φ)). (1.67)

Since we are interested in a Dirichlet boundary problem,Sg has a Gibbons-Hawking-
York term. We again consider the metric

ds2 = −N(t)dt2 + a2(t)dΩ2
3, (1.68)

and φ = φ(t) due the symmetries of space. Then, the action for the inflaton is

S[φ] = Area(S3)

∫
dt

(
a3

2N
φ̇2 −Na3V (φ)

)
. (1.69)

Let φ(t) = ϕ(t)/
√

Area(S3) and V(ϕ) = Area(S3)V (ϕ/
√

Area(S3)). Then,
the total action gives

S[a, ϕ] =

∫
dt

[
− aȧ2

2λN
+
N

2λ
a +

a3

2N
ϕ̇2 −Na3V(ϕ)

]
. (1.70)

The equations are

1

N2

((
ȧ

a

)2

− λϕ̇2

)
= 2λV(ϕ)− 1

a2
,

2
ä

a
+

(
ȧ

a

)2

− 2Ṅ
ȧ

a
= N2

(
6λV(ϕ)− 1

a2

)
− 3λϕ̇2,

ϕ̈+ 3
ȧ

a
ϕ̇− ϕ̇Ṅ = −N2V ′(ϕ). (1.71)

ForN = 1 we obtain (
ȧ

a

)2

= λϕ̇2 + 2λV(ϕ)− 1

a2
,

2
ä

a
+

(
ȧ

a

)2

= 6λV(ϕ)− 3λϕ̇2 − 1

a2
,

ϕ̈+ 3
ȧ

a
ϕ̇+ V ′(ϕ) = 0. (1.72)

We can rewrite the equations as(
ȧ

a

)2

= λϕ̇2 + 2λV(ϕ)− 1

a2
,

ä

a
= 2λ(V(ϕ)− ϕ̇2),

ϕ̈+ 3
ȧ

a
ϕ̇+ V ′(ϕ) = 0. (1.73)
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Notice that if
V(ϕ) = V0, (1.74)

a solution for the field is ϕ = ϕ∗ = const. The remaining equations are(
ȧ

a

)2

= 2λV0 −
1

a2
,

ä

a
= 2λV0. (1.75)

Thus we see that
Λ = 6λV0. (1.76)

For V0 > 0 we have de Sitter solution with

2λV0 =
1

`2
(1.77)

Clearly for this case, the initial and final states of the inflaton are the same.



Chapter 2

Quantum aspects

2.1 Canonical quantization

Following Dirac’s work on the quantization of constraint systems1, the wave function
of the system with scalar factor and scalar field is Ψ(a, ϕ) and must satisfy

ĤΨ(a, ϕ) = 0. (2.1)

This requieres to quantize

H = − λ

2a
p2 +

1

2a3
p2 + a3V(ϕ)− 1

2λ
a, (2.2)

where p is the momentum conjugate to ϕ. Then, in the Schrödinger picture we have
that

p→ −i~ ∂
∂a
, p→ −i~ ∂

∂ϕ
. (2.3)

Since
1

a
p2 = p

1

a
p = p2 1

a
, (2.4)

there is an ambiguity for the quantization. For this reason we consider

1

a
p2 → − ~

as+1
∂a(a

s∂a·), (2.5)

where s is a real parameter. The resulting equation

~2λ

2as+1
∂a(a

s∂aΨ)− ~2

2a3
∂2
ϕΨ +

(
a3V(ϕ)− 1

2λ
a

)
Ψ = 0, (2.6)

is the Wheeler-DeWitt (WdW) equation for the system. Let us search for solutions
where the potential is approximately flat, i.e. approximately constant. Classically this

1The reference is P.A.M. Dirac: Lectures on Quantum Mechanics, Belfer Graduate School of Sci-
ence Monographs, Vol. 2 (Yeshiva Univ., New York 1964)

17
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corresponds to an approximately constant value of the scalar field. This approxima-
tion allow us to drop the term ∂2

ϕΨ and the equation reduces to

~2

2as+1
∂a(a

s∂aΨ) +

(
V(ϕ)

λ
a3 − 1

2λ2
a

)
Ψ = 0. (2.7)

This can be interpreted as a one dimensional quantum system

− ~2

2as+1

∂

∂a

(
as
∂

∂a
Ψ

)
+ UeffΨ = 0, (2.8)

where

Ueff =
1

2λ2
a− V(ϕ)

λ
a3 (2.9)

The potential for V(ϕ) > 0 is plotted in figure 2.1. It vanishes for a = 0 and a∗ =

1/
√

2λV(ϕ) and its maximum is located at amax = a∗/
√

3.

Figure 2.1: Effective potential plot.

If we follow the standard rules of ordinary quantum mechanics, we must demand
that the wavefunction of the universe must be normalizable. This ensure a proba-
bilistic interpretation of the wavefunction. Normalization in practice demands to
impose a particular boundary condition. On the other hand, since physical observ-
ables are Hermitian, this restricts the choice of boundary condition as well. Apart
from these mathematical requirements, it will the comparison with experiments that
decide which boundary condition is adequate.
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As an example, consider the time-independent Schrödinger equation of a particle
with potential that has spherical symmetry. Then, we choose spherical coordinates
and therefore the equation will have a coordinate singularity at r = 0. The equation
is thus only valid for r > 0. Due to the rotational symmetry we use separation of
variables. Then, the angular part of the wavefunction is given by spherical harmonics
and we are left with the radial equation with an effective potential. The radial part,
denoted asR(r), is then written asR(r) = u(r)/r. Hence, the boundary conditions
are considered for u(r) instead of R(r). This is valid since for n dimensions we will
have ∫

dnx
√
g |ψ|2 = V (Sn−1)

∞∫
0

dr rn−3|u|2. (2.10)

Forn = 3 we see thatumust be normalizable. The problem reduces to find solutions
of u that decay at r →∞ and are regular at r = 0. The substitutionR(r) = u(r)/r
is the fruitful but consist more than just a re-writing. The radial equation contains a
term of the form

− 1

rn−1
∂r(r

n−1∂rR), (2.11)

and after introducing u it becomes

− 1

r
∂2
ru− (n− 3)

(
1

r2
∂ru−

1

r3
u

)
. (2.12)

Forn = 3 it reduces the problem to a particle in half the real line. The kinetic part of
the classical Hamiltonian of this particle has the form p2/r and after the replacement
p→ −i~∂r , it must give−1

r∂
2
r . Therefore, it chooses a particular ordering!

Notice the similarity of the resulting WdW equation given in equation (2.8). If
this equation is derived from the classical Hamiltonian

Hc =
1

a
p2 + Ueff , (2.13)

it is reasonable to consider a ordering with s = 0. Moreover, the analogy suggests
that the wavefunction should be regular at a = 0.

We have to be careful since we are not dealing, say, with the toy model of the
hydrogen atom, the system of interest is the universe2. Other physical requirements
must be take into account. The quantum theory in a classical limit must reproduce
a classical universe. Bear in mind that in the WdW there is no time and therefore
it must emerge by some mechanism. On the other hand, we know that general rela-
tivity in a quantum field theory point of view is not renormalizable and thus we are
just dealing with an effective theory. This just means that our current description of
interactions between gravity and matter is valid for low energies or equivalent large
distances.

2Later we will see that the WdW equation has a solution for s = −1 not s = 0.
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Then, to reproduce classical results, we first seek for solutions in the semiclassical
limit. In practice this amounts to consider the WKB approximation. Then, we forget
about normalizing the wave function and consider the ansatz

Ψ = e
i
~S , (2.14)

with
S = S0 + ~S1 + ~2S2 + . . . . (2.15)

Then, at order ~0 we obtain

1

2a

(
∂

∂a
S0

)2

+ Ueff = 0, (2.16)

and at order ~
∂

∂a
S1 =

i

2

(
1
∂
∂aS0

∂2

∂a2
S0 +

s

a

)
. (2.17)

Notice that at ~0 order, the ordering problem is not relevant. Moreover, the expres-
sion given in equation (2.16) can be interpreted as the Hamilton-Jacobi equation of
a classical particle with zero energy from which the equation (2.8) can be derived.
Thus, the classical momentum corresponds to

p =
∂

∂a
S0. (2.18)

The equation (2.16) can be written as

∂

∂a
S±0 = ± a

λ

√(
a

a∗

)2

− 1. (2.19)

Following the particle interpretation, a real classical momentum is only obtained for
a > a∗. Then, we can expect that in this region we should recover a classical universe3

Since p = −aȧ/λ, we have

ȧ = ∓

√(
a

a∗

)2

− 1. (2.20)

For an expanding universe we have ȧ > 0 and this corresponds to S−0 . A collapsing
universe correspond to S+

0 . Which universes are we talking about? They are solu-
tions of equation (2.20). The equation can be written as(

a

a∗

)2

− ȧ2 = 1. (2.21)

3If the reader thinks that this is extremely hand wavy, I recommend reading arXiv:0909.2566 and
DECOHERENCE IN QUANTUM COSMOLOGY by J.J. Haliwell.
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A general solution is of the form

a = a∗ cosh(ξ(t)), ȧ = ± sinh(ξ(t)). (2.22)

For a expanding universe we can set ξ(t) = t/a∗ to obtain a = a∗ cosh(t/a∗) with
a∗ = 1/

√
2λV(ϕ). In this approximation we can have 2λV(ϕ) = 1/`2 and there-

fore the solutions is dS4 in global coordinates. In order to have ȧ > 0 we must re-
strict the solution to 0 < t <∞. For ȧ < 0, we can consider the same solution with
−∞ < t < 0.

The solution of S±0 is

S±0 (a) = C0(ϕ)± a2
∗

3λ

((
a

a∗

)2

− 1

)3/2

, (2.23)

and the solution for S1 is

S±1 = C1(ϕ) +
i

2

[
(s+ 1) ln

(
a

a∗

)
+

1

2
ln

(
a2

a2
∗
− 1

)]
. (2.24)

Thus, the solutions are of the form

ΨWKB ∼
1(

a
a∗

) s+1
2
(
a2

a2
∗
− 1
) 1

4

A1e
+i

a2
∗

3λ~

(
a2

a2∗
−1

)3/2

+A2e
−i a2

∗
3λ~

(
a2

a2∗
−1

)3/2
 ,

(2.25)
whereA1 andA2 are constants. We see that for a

a∗
� 1 the wavefunction oscillates

and for a
a∗
� 1 it decays/grows. For the former case, exp

(
+i

a2∗
3λ~

(
a2

a2∗
− 1
)3/2

)
corresponds

to a contracting universe and exp

(
−i a2∗

3λ~

(
a2

a2∗
− 1
)3/2

)
an expanding universe.

Notice that this expression suggests that we should consider s = −1 rather than
s = 0 as one naively expect.

Now that we argued that we can actually find a classical spacetime, let us try to
actually solve the WdW equation without the semiclassical approximation. We write
the equation as

∂2

∂a2
Ψ +

s

a

∂

∂a
Ψ− 9π2

4

a2

`4p

(
1− a2

a2
∗

)
Ψ = 0, (2.26)

where `p is the Planck length. Since the scale factor has units of length the new vari-
able σ = a2 has units of area. For Ψ(a, ϕ) = ψ(σ, ϕ), the equation becomes

ψ′′ +
1 + s

2σ
ψ′ +

9π2

16σ2
p

(
σ

σ∗
− 1

)
ψ = 0, σp = `2p, σ∗ = a2

∗, (2.27)
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and ψ′ = ∂σψ. We can simplify the expression further by setting

ζ =
σ

σ∗
− 1, ψ(σ, ϕ) = f(ζ). (2.28)

Notice that ζ = ζ(a, ϕ). We obtain

d2

dζ2
f +

1 + s

2(ζ + 1)

d

dζ
+ κ2ζf = 0, κ =

3πσ∗
4σp

. (2.29)

For s = −1 we equation becomes

d2

dζ2
f = −κ2ζf, (2.30)

and the solution is given in terms of Airy’s functions

fs=−1(ζ) = c1Ai
(
−κ2/3ζ

)
+ c2Bi

(
−κ2/3ζ

)
. (2.31)

Physically we expect thatσ ≥ 0 and therefore ζ ≥ −1. In figure 2.2 the functions are
plotted for κ = 1 and ζ ≥ −1. The functions oscillate for ζ � 0. The Ai function

Figure 2.2: Plots of the solutions. In the graphic x stands for−κ2/3ζ not a.

decays from ζ = 0 toward ζ = −1 and the Bi function grows from ζ = 0 toward
ζ = −1. The region−1 ≤ ζ � 0 is the classical forbidden region since from

ζ =
a2

a2
∗
− 1, (2.32)

we see that 0 ≤ a � a∗, compare with figure 2.1. Thus, for 0 ≤ a � a∗, the Ai
function grows and the function Bi decays. We stress that the functions and their
derivatives at ζ = −1 does not vanish. However, the partial derivative with respect
to the scale factor vanish! Indeed:

∂

∂a
fs=−1

∣∣∣∣
a=0

=
∂ζ

∂a

∣∣∣∣
a=0

∂fs=−1

∂ζ

∣∣∣∣
ζ=−1

=
2a

a2
∗

∣∣∣∣
a=0

× const. = 0. (2.33)
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For ζ � 0 and κ fixed, we have4

fs=−1(ζ) ∼ 1
√
πκ1/6ζ1/4

[
c1 cos

(
2

3
κζ3/2 − π

4

)
− c2 sin

(
2

3
κζ3/2 − π

4

)]
(2.34)

The same result is obtained for ζ > 0 fixed and κ� 0. This is the semiclassical limit
since κ� 0 as `p → 0. Since− sin(x− π/4) = cos(x+ π/4), we can write

fs=−1(ζ) ∼ 1
√
πκ1/6ζ1/4

×
[
(c1e−i

π
4 + c2ei

π
4 )e+i 2

3
κζ3/2

+ (c1ei
π
4 + c2e−i

π
4 )e−i

2
3
κζ3/2

]
.

(2.35)

Due to the fact that
2

3
κζ3/2 =

1

~
a2
∗

3λ

(
a2

a2
∗
− 1

)3/2

, (2.36)

we recover the WKB approximation given in equation (2.25).

Now we face the fundamental problem: how do we set c1 and c2?

As discussed for the radial wave function, to ensure normalization, we will search
for regular solutions at r = 0 that decay at infinity. In our case, we find that both
solutions are regular at ζ = −1 and decay for ζ → ∞. The Airy functions are not
square integrable in the range ζ ∈ [−1,∞)5.

On the other hand, a general solution predict a superposition of expanding and
contracting universes. In an ordinary quantum, it is standard to interpret that the
wave function “collapse” due to a measurement. Of course we are assuming that the
wavefunction is normalizable and thus the wavefunction corresponds to a probability
amplitude. Moreover, the measurement is carried out by degrees of freedom outside
the system. In our case, the wavefunction is not normalizable and external observers
cannot (or don not) exist.

Regarding the non normalizability, we recall that in ordinary quantum mechanics
these type of states are encounter in a scattering problem. We make sense of these
states with the aid of the probability current and its conservation. In our case, we find
from the WdW equation (

f
df∗

dζ
− f∗df

dζ

)
= const. (2.37)

For the solution we get

− κ2/3
[
(c1c

∗
2 − c∗1c2)Ai× Bi′ + (c∗1c2 − c1c

∗
2)Ai′ × Bi

]
= const. (2.38)

4For the expansions of the Airy functions see “Special functions and their applications" by Lebedev.
5Notice that only Ai(z) is square integrable in the range z ∈ [0,∞), see e.g. Airy Functions and

Applications to Physics by Olivier Vallée and Manuel Soares.
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The solution is found for a zero constant and c1c
∗
2 = c∗1c2. The result imply c2

1|c2|2 =
|c2|2c2

1 and thus we can only consider the constants to be real. Hence, the wavefunc-
tion must be real.

Recall that for a scattering problem one usually consider scattering states , linear
combinations of time independent plane waves at given energy, and thus they are not
normalizable. However, the probability current gives a method to compute the re-
lation between the coefficients and find physical answers. Consider the problem of
a particle beam arriving from x → −∞ hitting a finite barrier located near x = 0.
The incoming wavefunction is a superposition of the source and reflect waves, i.e.
ceik0x + r(k0)e−ik0x and the outgoing or transmitted wave t(k0)eik0x. The ampli-
tudes r(k0) and t(k0) are the reflexion and transmission coefficients respectively. The
probability current and its conservation gives |c|2 = |r(k0)|2 + |t(k0)|2. Hence, we
can write

Pr =
|r(k0)|2

|c|2
, Pt =

|t(k0)|2

|c|2
, 1 = Pr + Pt. (2.39)

Interpreting Pr and Pt as conditional probabilities6 of reflexion and transmission,
we see that scattering states can give us physical information. The reason why these
states can do that is because a normalizable wavefunction can be constructed as a wave
packet of scattering sates. For x→ −∞ and x→ +∞ , we will have

ψs + ψr =

∫
dk A(k)(c(k)eikx + r(k)e−ikx), ψt =

∫
dk A(k)t(k)eikx.

(2.40)
Then, if A(k) sharply peak at k = k0,we obtain the scattering states.

Motivated by the above, let us consider the two simplest cases for c1 and c2 real:
i) c2 = 0 and ii) c1 = 0. Thus we consider

ΨA =
Ai(−κ3/2ζ)

Ai(κ3/2)
, ΨB =

Bi(−κ3/2ζ)

Bi(κ3/2)
. (2.41)

At best, |Ψ|2 can be interpreted as a conditional probability (density.) Let us consider
the event of the creation of the universe at ζ = −1 and interpret its probability to
be |Ψ(ζ = −1)|2. Then, the conditional probability that it has its classical form
(ζ � 0) given that was created at ζ = −1 is |Ψ|2. Since the universe has its classical
form because it was created at ζ = −1, the conditional probability can be naturally
be interpreted as the probability of the universe being created.

The behavior of both wave functions7 are summarized in table 2.1.

Hence, the conditional probabilities are

|ΨA|2 ∼ e+ 4
3
κ, |ΨB|2 ∼ e−

4
3
κ. (2.42)

6See appendix A for the justification of this interpretation.
7For ζ � 0 andκfixed, we havefs=−1(ζ) ∼ 1√

πκ1/6(−ζ)1/4

[
c1
2

e−
2
3
κ(−ζ)3/2 + c2e+ 2

3
κ(−ζ)3/2

]
.
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ζ � 0 ζ � 0

ΨA ∼ 2
(−ζ)1/4 e+ 2

3
κe−

2
3
κ(−ζ)3/2 ∼ 2

ζ1/4 e+ 2
3
κ cos

(
2
3κζ

3/2 − π
4

)
ΨB ∼ 1

(−ζ)1/4 e−
2
3
κe+ 2

3
κ(−ζ)3/2 ∼ − 1

ζ1/4 e−
2
3
κ sin

(
2
3κζ

3/2 − π
4

)
Table 2.1: Behavior of ΨA and ΨB

Working in a system of units in which λ = 1 and ~ = 1, we have

κ =
1

2V(ϕ)
, (2.43)

and thus
|ΨA|2 ∼ e

+ 2
3

1
V(ϕ) , |ΨB|2 ∼ e

− 2
3

1
V(ϕ) . (2.44)

On the other hand if we work in units i which `p = 1 and since we obtain de Sitter,
we obtain

κ =
9π

4

1

Λ
. (2.45)

Then
4

3
κ =

1

4

12π

Λ
= π`2. (2.46)

Thus, we can also write

|ΨA|2 ∼ e+π`2 , |ΨB|2 ∼ e−π`
2
. (2.47)

The conditional probability for ΨA is enhanced for large ` (small but constant V(ϕ)
or small Λ) and small ` (large but constant V(ϕ) or large Λ) for ΨB . Consider a
potential given in figure 2.3. The regions around the pointsO,O′, Q,Q′ are approx-
imately flat, i.e., constant. Then, ϕ is approximately constant in each region. Then,
we see that |ΨA|2 is enhanced for the pointsQ,Q′ compared withO,O′. Moreover,
among the pairQ,Q′, the best option isQ. For |ΨB|2, the pointsO,O′ are preferred
compared withQ,Q′ and among the pairO,O′, the best option isO′.

Since the physical scenario is the creation of a universe, we should expect that the
potential should be at the lowest value possible. This is of course is a purely theoretical
prejudice. Following this reasoning, we then should discard the solution ΨB since for
Q the conditional probability is small. Hence, we arrive to the conclusion that ΨA is
the best solution and we expect ` to be large.

Let us study ΨA in more detail.

The metric of the expanding universe can be written as

ds2 = −dt2 +
`2

4
(e2t/`+2+e−2t/`)

1(
1 + ρ2

4`2

)2 (dρ2 +ρ2dΩ2
2), t > 0. (2.48)
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Figure 2.3: Example of a potential for the inflaton.

Let ρ = 2ρ̄ and consider `→∞. Then

ds2 ≈ −dt2 + `2e2t/`dx2 t > 0. (2.49)

The spatial geometry becomes flat. For the contracting universe we just consider
−∞ < t < 0. It remains to discuss which universe (expanding or contracting) is
selected. The problem is basically how to overcome the fact that we cannot assume
the “collapse" of the wavefunction.

The simplest possible solution is to pick one possibility and define that solution as
the wavefunction of that universe. This seems ad hoc but notice that the semiclassical
approximation tells us that the two universe do not interfear with each other.

From now on, we will focus on the expanding universe.

2.1.1 Path integral representation of ΨA

Let us now deal with a different situation. Consider the euclidean gravitational action

IE [gµν ] = − 1

16πGN

∫
d4x
√
g(R− 2Λ), (2.50)

for compact manifolds, i.e. manifolds without boundary. The equations of motion
are Rµν − 1

2Rgµν + Λgµν = 0. We search for solutions that satisfy Rµν = Λgµν
with Λ > 0. Then, the equation reduces toR = 4Λ. Consider

ds2 = `2dΩ2
4. (2.51)
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Then R = 12/`2 and thus Λ = 3/`2. Therefore, S4
` is a solution. The on-shell

action result

I∗E = − Λ`4

8πGN
Area(S4) = − 3

8πGN
`2

2π5/2

Γ(5/2)
= −π`

2

G
. (2.52)

The key point to notice is that

e−
I∗E
~

∣∣∣∣
`p=1

= e+π`2 = |ΨA|2. (2.53)

This is very interesting since e−
I∗E
~ corresponds to the semiclassical limit of the path

integral ∫
Dgµν e−

IE [gµν ]

~ . (2.54)

This suggests that ΨA may have also have an euclidean path integral representation.
This is strange since gravity deals with Lorentzian manifolds. In order to shed some
light to this possibility, consider the metric of S4

`

ds2 = `2(dψ2 + sin2 ψdΩ2
3), 0 ≤ ψ ≤ π. (2.55)

The equator is given for ψ = π/2. Let ψ = ψ̄ + π/2, then

ds2 = `2(dψ̄2 + cos2 ψ̄dΩ2
3), −π

2
≤ ψ̄ ≤ π

2
. (2.56)

Now let ϑ = `ψ̄ to obtain

ds2 = dϑ2 + `2 cos2(ϑ/`)dΩ2
3, −π

2
` ≤ ϑ ≤ π

2
`. (2.57)

If we consider the analytical continuation ϑ = ±it we get

ds2 = −dt2 + `2 cosh2(t/`)dΩ2
3, (2.58)

which is the metric of dS4. Hence, we conclude that the metric of the euclidean
gravitational action SE associated to ΨA

8 must be in general complex in order to
reproduce the classical universe. To be more precise, by a complex metric, we mean
that the time coordinate must be complex with a scale factor always real. Let z be the
complex time. Then, the line segment is of the form

ds2 = dz2 + a2(z)dΩ2
3, (a(z))∗ = a(z). (2.59)

Now, let us consider a Dirichlet boundary problem for the complex metric given
above. Then, the problem reduces to a Dirichlet boundary problem for a(z). The ac-
tion is considerer to be the Einstein-Hilbert action plus the Gibbons-Hawking-York
term. To obtain this action, first consider the Lorentzian version

SL =
1

2λ

∫
dtN

(
−aȧ2

N2
+ a− Λ

3
a3

)
. (2.60)

8Recall that the action IE is related to |ΨA|2.
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Then, we considerNdt = −iNdz to obtain

SL = +i

∫
dz

[
− a

N

(
da

dz

)2

−Na +N Λ

3
a3

]
. (2.61)

Then, the euclidean action corresponds to

SE =
1

2λ

∫
dz

[
− a

N

(
da

dz

)2

−Na +
Λ

3
Na3

]
. (2.62)

We see that e
i
~SL = e−

1
~SE and the line segment is of the form

ds2 = N (z)dz2 + a2(z)dΩ2
3. (2.63)

The constraint and the equation result(
1

N
da

dz

)2

= 1− Λ

3
a2,

1

a

d2a

dz2
− 1

a

da

dz

dN
dz

= −Λ

3
N 2. (2.64)

ForN = 1 result (
da

dz

)2

= 1− Λ

3
a2,

1

a

d2a

dz2
− = −Λ

3
. (2.65)

For Λ = 3/`2, we see that
a = ` sin(z/`), (2.66)

is a complex solution. Then, the on-shell action result

S∗E =
1

λ

∫
γ

dz

(
−a +

a3

`2

)
. (2.67)

Consider the path γ to be

γ =

{
z = τ 0 ≤ τ ≤ π

2 `
z = π

2 `+ it 0 ≤ t ≤ tf
. (2.68)

Then we see that

a =

{
` sin(τ/`) 0 ≤ a ≤ `
` cosh(t/`) ` ≤ a ≤ ` cosh(tf/`)

. (2.69)

In geometric terms, this corresponds to glue half of S4
` with a region (0 ≤ t ≤ tf ) of

dS4. This is depicted in figure 2.4. Recall that the constraints change the boundary
problem to an initial condition problem. The initial condition now traduces in the
euclidean region where

a(τ = 0) = 0,
da

dτ
(τ = 0) = +1. (2.70)
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Figure 2.4: Gluing of half S4
` with the upper half of dS4.

Then, the final state is located in the Lorentzian region where t = tf , i.e. the path
ends at tf and thus there is a boundary. Evaluating the on-shell action, the real part
gives

−<
(
S∗E
~

)
= +

2

3
~κ, (2.71)

and the imaginary part is of the form

−=
(
S∗E
~

)
= − `

2

λ~

uf∫
0

du (cosh3 u− coshu), (2.72)

where u = t/`. The integral gives
uf∫
0

du (cosh3 u− coshu) =

uf∫
0

du coshu(cosh2 u− 1),

=

uf∫
0

d(sinhu) sinh2 u,

=
1

3
sinh3 uf ,

=
sinhuf

3
(cosh2 uf − 1),

= ±1

3
(cosh2 uf − 1)3/2,

= ±1

3

(
a2
f

a2
∗
− 1

)3/2

,

= ±1

3
ζ

3/2
f . (2.73)
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Therefore
−=

(
S∗E
~

)
= ∓2

3
κζ

3/2
f . (2.74)

Hence,
S∗E,±
~

= +
2

3
~κ∓ i2

3
κζ

3/2
f . (2.75)

In order to reproduce the WKB approximation for an expanding universe we con-
sider only the + result. We conclude that

ΨA ≈ e−
S∗E,+

~ = e+ 2
3
κ−i 2

3
κζ

3/2
f . (2.76)

Hence we see that the wavefunction can be interpreted as

ΨA ∝ lim
~→0

∫
Dgµν e−

1
~SE ∼

∑
e−

1
~S
∗
E . (2.77)

where the sum is over all the possible euclidean solutions that extremize the action, i.e.
the sum over the saddles. This is analog to the procedure of finding the ground sate of
an ordinary quantum mechanical problem via an euclidean path integral. In appendix
B, this is discussed in detail for the harmonic oscillator. This simple example show us
that the euclidean path integral is a mathematical prescription to define the ground
state.

Hence, for a general prescription, the sum of saddles is over complex geometries
(complex in time) that in the euclidean region are compact and that in the real time
region reproduces a universe at some particular time, i.e. tf . With this picture, we see
that the problem is a one-boundary problem of spatial real metrics with the boundary
defined in the Lorentzian sector at tf . The one boundary problem is actually refer as
the no-boundary proposal by Hartley and Hawking9. The discussed complex geome-
try is the prototype for all no-boundary solutions. It corresponds to a specific saddle.

On the other hand, since a boundary problems are changed if constraints are in-
volved, our problem can be interpreted as an initial condition problem. If we set the
boundary, then the task is to find the complex geometries that will give us the final
state. Of course, we seek for a particular class of geometries of the form given in equa-
tion (2.63) . In the euclidean region the complex geometry must satisfya(z = 0) = 0.
Then, the constraint for generalN indicates that for a(z = 0) = 0, we must have
1
N

da
dz (z = 0) = ±1. Thus, from the results of the prototype, we must consider

1
N

da
dz (z = 0) = +1. Hence the path integral is of the form∫

dN

∫
Da e−

1
~SE [N,a]. (2.78)

The path for the ordinary integral forN must be determined.
9See Hartle, J.; Hawking, S. (1983).“Wave function of the Universe". Physical Review D. 28 (12):

2960. Don Page called the no-boundary proposal a one boundary proposal in arXiv:hep-th/0610121.

https://arxiv.org/abs/hep-th/0610121
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So far, the path integral representation of ΨA has been build with only gravity.
If we introduced the inflaton field, which its goal is give a dynamical nature of the
cosmological constant, the initial step is to consider the euclidean action

SE =

∫
dz

[
− a

2λN

(
da

dz

)2

− N
2λ

a +
a3

2N

(
dϕ

dz

)2

+Na3V(ϕ)

]
, (2.79)

where now ϕ is in general a complex field. The equation of motion for this field is

d2ϕ

dz2
+ 3

1

a

da

dz

dϕ

dz
− V ′ = 0. (2.80)

Again, we consider solutions for a nearly flat potential. Then, the equation at z = 0,
reduces to

a(z = 0)
d2ϕ

dz2
(z = 0) + 3

da

dz
(z = 0)

dϕ

dz
(z = 0) ≈ 0, (2.81)

which gives
dϕ

dz
(z = 0) ≈ 0. (2.82)

Then, we see that ϕ(z = 0) is a free parameter, i.e. an approximately a complex
constant.

The wavefunction that includes the inflaton with the complex geometry depicted
in figure 2.4 is called the Hartley-Hawking wavefunction ΨHH .

The euclidean path integral representation proposal has faces several problems.
Choosing a particular saddle with specific initial conditions may seem ad hoc. It is!
But is a theoretical proposal, so its predictions must contrasted with experiments (if
possible). The issues that we are now going to concentrate are purely theoretical:
general relativity is not renormalizable and the euclidean path integral is not bounded
from below. These issues (if any) are encoded in the dynamical part of the proposal,
i.e. the action.

In real time, the Lagrangian of the gravitational action has been taken to beL =
1

16πGN
(R−2Λ) (let us ignore the inflaton). If we want to want to quantize the theory

in a quantum field theory approach, we split the metric as gµν = ḡµν+
√

32πGNhµν .
Then, for small GN , hµν can be interpreted as the classical fluctuations around the
background ḡµν . Let us consider Λ = 0, then the background is flat and the result-
ing action corresponds an infinite (two) derivative expansion of hµν and the terms
(schematically) are proportional to (

√
GN )n/GNh

n−1(∂h)2 where n = 2, 3, . . .,
i.e.

S ∼
∫

d4x
∞∑
n=2

G
n−2

2
N hn−1(∂h)2 =

∫
d4x ((∂h)2+

√
GNh

2(∂h)+GNh
3(∂h)2+. . .).

(2.83)
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At quadratic order in hµν , i.e. n = 2, the action does not depend on GN . Thus
including the infinite terms, we see that the ones for n > 2 are suppressed. The
field hµν can be thought as the generalization of the spin 1 one massless gauge field
Aµ of electrodynamics and it is referred as to the graviton ( massless with spin 2).
The gauge transformation forAµ: Aµ → Aµ + ∂µθ corresponds to an infinitesimal
diffeomorphism transformation for hµν : hµν → hµν +∂µξν +∂νξµ. For n = 2 the
classical vacuum equations of motion (in some gauge) are−∆hµν = 0 and thus we
have wave solutions. These solutions are the gravitational waves.

If we now consider a non-vanish cosmological constant, we will obtain the same
result but now the action has another contribution of infinite terms proportional the
possible contractions of hµν with itself and the background metric. In this second
expansion, one obtains a term of the form Λ(hµν− 1

2 ḡµνg
ρσhρσ)hµν . Naively we may

interpreted it as a mass term but it cannot be since it would break diffeomorphism
invariance.

Let us set Λ = 0 again. By writing hµν(x) = eµν(k)e−ik·x we find that each

interaction vertex has a factor of G
n−2

2
N k2 (of course we only consider n > 2). If we

want to compute quantum correction to the graviton amplitudes we will face diver-
gences for large momenta. This is not problematic. The standard model of particles
phases the same issue. The difference is that by the addition of a finite set of countert-
erms in the action, these UV divergences are removed. For the case of the graviton,
we will need infinite set of counterterms. So we say that gravity, by these we mean
the theory of the graviton, is not normalizable. This is not a monumental drawback
since it makes physical predictions at low energies, i.e. large distances compared to the
Planck length. Thus, we consider it to be an effective field theory. This is the main
point. Then, in this point of view the Lagrangian 1

16πGN
(R − 2Λ) should consider

also all possible Riemannian invariants such asGNR2 and so on10.

For the no-boundary proposal, notice that we recover the classical spacetime via
the semiclassical approximation. Mathematically, this corresponds to the saddle point
approximation of the euclidean path integral. Since

exp

(
−1

~
SE

)
= exp

(
− 1

16πGN~

∫
d4x
√
g(. . .)

)
, (2.84)

we see that the weak field limitGN → 0 is compatible with the limit ~→ 0. Hence,
ΨHH contemplates only the leading contribution of the weak field limit. This is not
a problem. Since ` is the characteristic length of the system and `p =

√
GN~, then in

the effective field approach this means that the description should be valid for `� `p.
This is indeed true. We have argued that, via the conditional probability, ` should be
large.

10See Introduction to the Effective Field Theory Description of Gravity arXiv:gr-qc/9512024 by
John F. Donoghue and also Effective Field Theory, Past and Future arXiv:0908.1964 by Steven Wein-
berg.

https://arxiv.org/abs/gr-qc/9512024
https://arxiv.org/abs/0908.1964
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Regarding the conformal problem, consider the Weyl transformation g̃µν(x) =
Ω2(x)gµν(x). Then, we obtain that√

det g̃R(g̃) =
√
g[Ω2R(g) + 6∇µΩ∇µΩ− 6∇µ(Ω∇µΩ)]. (2.85)

So that the euclidean action, schematically is of the form

SE [g̃] ∼ SE [g]−
∫
√
g∇µΩ∇µΩ. (2.86)

This means that e−
1
~SE [g̃] can grow (rather than decay) for large values of Ω. The

way to get around this problem is to recall that the no-boundary prescription is a
prescription to define a path integral representation of the wavefunction. Moreover,
it is used only in the semiclassical approximation and therefore we focus only on the
saddles. It does not have the goal the make euclidean gravity theory a well defined
theory11.

Now we are in position to discuss the phenomenological triumphs and issues of
ΨHH .

11Nevertheless some proposals to solve this problem has been suggested in: “Path integrals and the
indefiniteness of the gravitational action", Nuclear Physics B138 (1978) 141-150 by Gibbons, Hawking
and Perry, “The path integral measure, conformal factor problem and stability of the ground state of
quantum gravity", Nuclear Physics B341 (1990) 187—212 by Mazur and Mottola and more recently in
“The Canonical Ensemble Reloaded: The Complex-Stability of Euclidean quantum gravity for Black
Holes in a Box", J. High Energ. Phys. 2022, 215, arXiv:2202.11786 by Marolf and Santos.

https://arxiv.org/abs/2202.11786
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Chapter 3

Phenomenology

Let us start from scratch and consider the equation (no Λ)

Rµν −
1

2
gµνR = 8πGNTµν . (3.1)

If we apply this equation to the universe, all that can be inside of it is modeled as a
fluid. Like air molecules in a vessel. Notice that planets are basically a point in this
cosmological fluid. Consider now

∇µ(Rµν −
1

2
gµνR) = 8πGN∇µTµν . (3.2)

By construction (due to metric compatibility) the right hand side is equal to zero and
thus we see that the energy-momentum tensor is conserved, i.e. ∇µTµν = 0. Notice
that equation can be written as

Rµν = 8πGN

(
Tµν −

1

2
gµνT

)
, T = gµνTµν . (3.3)

The metric ansatz is1

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
, (3.4)

and the energy-momentum tensor is consider to be a perfect fluid. Then we have

T00 = ρ, Tij = gijp, T0i = 0, (3.5)

where ρ is the energy density and p the pressure. The equation of state is assume to
be p = wρ. The trace and the conservation of Tµν gives

T = −ρ+ 3p,
ρ̇

ρ
= −3(1 + w)

ȧ

a
. (3.6)

1By the way this metric is referred as to the Friedmann-Robertson-Walker (FRW) metric.

35
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Then, equations to solve are(
ȧ

a

)2

=
8πGN

3
ρ− k

a2
,

ä

a
= −4πGN

3
(ρ+ 3p),

ρ̇

ρ
= −3(1 + w)

ȧ

a
. (3.7)

Recall that the first equation is the constraint. In order to solve the third equation,
let t0 the time of today and thus the solution is

ρ(t) = ρ0

(
a(t)

a0

)−3(1+w)

, (3.8)

where ρ0 = ρ(t0) and a0 = a(t0). Cosmologist use the Hubble parameter defined
as

H(t) =
ȧ

a
, (3.9)

and thusH0 = H(t0) is its value today. The remaining equations become

H2 =
8πGN

3
ρ− k

a2
, Ḣ = −4πGN (1 + w)ρ+

k

a2
. (3.10)

For a realistic model of the universe, we should consider a collection of perfect fluids
and thus the equations to solve are

H2 =
8πGN

3
%− k

a2
, Ḣ = −4πGN

∑
i

(1 + wi)ρi +
k

a2
, (3.11)

where

%(t) =
∑
i

ρi(t), ρi(t) = ρi,0

(
a(t)

a0

)−3(1+wi)

. (3.12)

The constraint can be written as

k = (aH)2

(
8πGN
3H2

%− 1

)
. (3.13)

Notice that aH has dimensions inverse length and 8πGN
3H2 dimensions of inverse en-

ergy density. For the later we define the “critical” energy density

%c(t) =
3H2(t)

8πGN
, (3.14)

and thus
k = (a(t)H(t))2

(
%(t)

%c(t)
− 1

)
. (3.15)
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Then, the co-moving Hubble radius is defined as (a(t)H(t))−1 and in order to make
contact with observations the dimensionless density parameter is defined as

Ω(t) =
%(t)

%c(t)
. (3.16)

The constraint takes the form

k =

(
1

(a(t)H(t))−1

)2

(Ω(t)− 1). (3.17)

Notice that the left hand side is time independent. Then, for any two times t0 and
t1, we will have(

1

(a1H1)−1

)2

(Ω1 − 1) =

(
1

(a0H0)−1

)2

(Ω0 − 1). (3.18)

This is just a consequence that the topology does not change. Suppose that that Ω0 is
measured. This corresponds that we knowH2

0 and %0 =
∑

i ρi,0
2. Then, there must

be a tuning of parameters at t1.

Now, there is a scenario in which today we can have Ω0 = 1 or more realistic
Ω0 ≈ 1. This means that %0 ≈ %c0 and k ≈ 0. Then, we would have(

1

(a1H1)−1

)2

(Ω1 − 1) ≈ 0. (3.19)

On the other hand, we must solve

Ḣ ≈ −4πGN
∑
i

(1 + wi)ρi. (3.20)

In order to do so let us consider the ansatz

a(t) = a0

(
t

t0

)β
. (3.21)

Then the equation reduces to

β

(
t

t0

)−2

≈
∑
i

ci

(
t

t0

)−3β(1+wi)

, (3.22)

where
ci =

4πGN
3

(1 + wi)ρi,0t
2
0. (3.23)

2Due to scale invariance in the spatial part of the metric, we can always set a0 = 1. Here, will
keep the factor a0 with the understanding that is not a parameter to be measured. On the other hand
knowing these quantities is not a trivial task. Apart from the actual measurements it must define what
kind of fluids are in the universe.
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Let us consider tree type of fluids: dust (wd = 0), radiation (wr = 1/3) and a strange
fluid with (wv = −1). Then,

β

(
t

t0

)−2

≈ cd
(
t

t0

)−3β

+ cr

(
t

t0

)−4β

. (3.24)

We see that the ansatz is suitable for t < t0. For t � t0 radiation dominates and
thus β = 1/2. Hence, for t� t0 we have that %(t) ≈ ρr(t) and

a(t) ≈ a0

(
t

t0

) 1
2

, H(t) ≈ 1

2t0

(
t

t0

)−1

, (a(t)H(t))−1 ≈ 2t0
a0

(
t

t0

) 1
2

.

(3.25)
Notice that this universe faces a singularity in the past at t = 0. Thus, the solution
can be trusted for t ≥ tp where tp is Planck’s time. For t1 = tp, we obtain

1

tp
(Ωp − 1) ≈ 0. (3.26)

Since tp ∼ 5.39 × 10−44 this imply that |Ωp − 1| ∼ 10−44−χ with χ > 0. This is
an extreme tuning!

On the other hand, notice that at early stages the strange fluid does not contribute
but for t > t0 we see from (3.24) that it will be the only source. Then, for w = −1
the density is constant and thus % ≈ ρsf,0, where sf denotes strange and is a positive
constant. Assume that now we start with

Rµν −
1

2
gµνR+ gµνΛ = 8πGNTµν . (3.27)

Then, we interpret the cosmological constant as a source, i.e.

TΛ
µν = − Λ

8πGN
gµν . (3.28)

The equation result

Rµν −
1

2
gµνR = 8πGN (Tµν + TΛ

µν), (3.29)

where Tµν includes dust and radiation. The cosmological constant as a fluid will give
that

ρΛ =
Λ

8πGN
. (3.30)

If the strange fluid is the cosmological constant, then Λ > 0. The constraint for
t > t0 takes the form

H2 ≈ Λ

3
, (3.31)

and since the universe is expanding we obtain a ∼ e+
√

Λ/3t, i.e. it is exponentially
expanding.

The whole scenario exposed above corresponds to out current model of our uni-
verse called the ΛCDM model3. In this model, dust stands for ordinary matter and

3See arXiv:2105.05208 for a detail discussion of this model.

https://arxiv.org/abs/2105.05208
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dark matter. The strange fluid adjudicated to the cosmological constant Λ is referred
as dark energy . Hence, its future behavior resembles a de Sitter spacetime with large
`, compare with equation (2.49). In summary, ignoring the singularity at t = 0, we
have

a(t) ∼


e+
√

Λ/3t t > t0 (Dark energy domination)

t2/3 t < t0 (Matter domination)
t2 t� t0 (Radiation domination)

. (3.32)

In the far future, the universe will be a very lonely place. A cartoon of the ΛCDM
model is depicted in figure 3.1. Notice that for FRW universe, space is completely

Figure 3.1: ΛCDM universe

homogenous and isotropic, this is because the spatial line segment is R3. Strictly
speaking, this would mean that there would not be galaxies, star, planets, etc as we
have measured. So we spect that at large enough scales, the universe should become
statistically homogeneous and statistically isotropic4. In the boundary of radiation
domination and matter domination (photons decouple), the cosmic microwave back-
ground (CMB) was created and gives a snapshot of the universe at that stage. The in-
credible measures of CMB indicates that is almost perfectly isotropic but with small
anisotropies in its temperature5. These fluctuations, at linear order, are well described
by a Gaussian random process. This is nice since it fits with the (classical) statisti-
cal mechanical notion of fluids and the assumption that the equations are sourced

4Notice that statistics is involved in two ways: as the usual way in an experiment or data analysis and
in a (classical) statistical mechanical way.

5See arXiv:1303.5083.

https://arxiv.org/abs/1303.5083
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by them. Moreover, these anisotropies are thought to be related with small pertur-
bations, around the FRW background, that corresponds to the seed that forms the
large scale structure of the universe6. However, there is no fundamental explanations
of the Gaussian profile and its origin. The ΛCDM model is consistent with current
observations but at the same time indicates the existence of dark energy and matter.
Our current knowledge, i.e. the standard model of physics, has not yet establish the
existence of “dark” particles7. On the other hand, dark energy has interpreted as the
cosmological constant but no dynamical origin has been observed8.

Returning to the flatness extreme tuning, notice that de Sitter with large ` also
suggest that maybe there is a dynamically possibility in which k ≈ 0 by a mechanism
before radiation dominance. From(

1

(a1H1)−1

)2

(Ω1 − 1) =

(
1

(a0H0)−1

)2

(Ω0 − 1), (3.33)

this would imply that there is an epoch for which the left hand side vanishes and thus
Ω0 ≈ 1 which is in agreement with observations. No tuning required. Of course the
mechanism must end in order to transition to the radiation dominance epoch. The
fluid that produces this mechanism must then convert to radiation.

This fluid is assumed to have a equation of state asρ = wp and thusρ = ρ∗a
−3(1+w).

Since
k = (aH2)(Ω− 1), (3.34)

we demand that Ω = 1, so ρ = ρc. From the definition of ρc, we get

H2 =
8πGN

3
ρ. (3.35)

We also have
Ḣ = −4πGN (1 + w)ρ. (3.36)

From the above expressions we obtain

− Ḣ

H2
=

3

2
(1 + w) ≡ ε, (3.37)

where ε codifies the nature of the fluid. The first expression combined with ρ =

ρ∗a
−3(1+w) gives

ȧ2 =
8πGN

3
ρ∗a

2−2ε. (3.38)

Taking a derivative we get

ä =
8πGN

3
(1− ε)ρ∗a1−2ε. (3.39)

6This subject is called: cosmological perturbation theory. See e.g. arXiv:hep-th/0306071v1.
7For a current review see arXiv:2104.11488.
8For a review see arXiv:1209.0922.

https://arxiv.org/abs/hep-th/0306071v1
https://arxiv.org/abs/2104.11488
https://arxiv.org/abs/1209.0922
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Again, the de Sitter lesson with large ` is that this epoch must satisfy ä > 0. This
epoch is called inflation9.The condition ä > 0 imply ε < 1 or equivalently w <
−1/3. Notice that for ε = 0, i.e. w = −1, we again recover de Sitter. Without
any surprise we consider the inflaton field φ. We already now that the potential must
have regions that is nearly flat (de Sitter approximation). But now we also now that
inflation must end (ε→ 1) and thus the potential must go (slow roll) to zero. Around
the zero potential we have a transition to the universe dominated by radiation. A
prototypical potential with slow roll is sketched in figure 3.2.

Figure 3.2: Slow roll potential

For these type of potentials we see that when inflation starts the potential term
dominates and when it ends the kinetic term dominates. Then, the kinetic energy of
the inflation converts to give the radiation fluid.

This is strange from the point of view of the no-boundary proposal. We expect
that inflation should start from the bottom of the well not on the plateau. Moreover,
we need a lot of inflation to produce the current structure in the universe10.

Hence, we see that ΨHH is not naturally compatible with slow-roll inflation11.

However, inflation models faces phenomenological and theoretical issues. The
slow roll inflation predicts small non-Gaussianities and thus more accurate measure-
ments of the CMB will be required to validate the theory12. On the theoretical side,
inflation moves the ΛCDM singularity back into an indefinite past13. It is only it is a

9For a more detail motivation of inflation and its consequences see arXiv:0907.5424. One of the
outstanding features of inflation is that as a semiclassical quantum theory, the origin of the seeds of the
cosmological perturbations that would lead to the large scale structure of the universe are completely
quantum.

10For details on the physics, see arXiv:0811.3919.
11There is a particular solution of this issue, it demands to take into account the presence of the

observer in the conditional probability. It is a solution coming from the interpretation of quantum
mechanics applied to the universe rather than a dynamical solution. See arXiv:1503.07205 , “Volume
Weighting in the No Boundary Proposal" arXiv:0710.2029v1 by Hawking and “The no-boundary mea-
sure of the universe", Phys. Rev. Lett. 100, 202301 (2008), arXiv:0711:4630, by Hartle, Hawking and
Hertog.

12See Planck 2018 results. X. Constraints on inflation.
13See arXiv:gr-qc/0110012 and arXiv:gr-qc/9612036v1.

https://arxiv.org/abs/0907.5424
https://arxiv.org/abs/0811.3919
https://arxiv.org/abs/1503.07205
https://arxiv.org/abs/0710.2029v1
https://arxiv.org/abs/0711.4630
https://arxiv.org/abs/1807.06211
https://arxiv.org/abs/gr-qc/0110012
https://arxiv.org/abs/gr-qc/9612036v1


42 CHAPTER 3. PHENOMENOLOGY

reasonable semiclassical quantum theory but tells us nothing about the quantum ori-
gin of the universe. ΨHH does and therefore there is a possibility that the potential
used in slow roll inflation is too naive. Moreover, the specific saddle that produces
ΨHH give the same prediction of tensor perturbations as in inflation14.

Notice that slow-roll inflation seems to prefer (tunneling) solutions as ΨB
15. But

in our interpretation of probability, this type of universe has low likelihood to exist
since ` has to be large.

For a review of the no-boundary proposal (and its issue with slow roll inflation)
see the latest comments by Maldacena in arXiv:2403.10510v1 and references within.

I end this note indicating that if a dynamical solution to the incompatibility of
the no-boundary proposal with slow roll inflation is given, the (classical) big bang
singularity will not exist.

14See arXiv:2303.08802.
15The solution is plotted in figure 2.2, we see that it resembles a wave function that tunnels a bar-

rier. In this case it corresponds to the part of the potential Ueff in the no-classical region, see figure
2.1 and recall that this region corresponds to −1 ≤ ζ � 0. For Vilenkin’s tunneling proposal see
arXiv:1808.02032v2 and specially “Quantum cosmology and the initial state of the Universe" Phys. Rev.
D 37, 888 1988.

https://arxiv.org/abs/2403.10510
https://arxiv.org/abs/2303.08802
https://arxiv.org/abs/1808.02032


Appendix A

Conditional probabilities

Consider an experiment that has two possibles outcomes: ↑ and ↓. Then, the sample
space is Ω = {↑, ↓}. The possible events, the subsets of the sample space, are {↑, ↓},
{↑}, {↓} and {∅}. The cardinality of the set {↑, ↓} is 2 and for the remaining is 1.
Then, the probability of the sample is space is defined to be

P (Ω) = 1. (A.1)

This is the normalization axiom.

Since Ω = {↑} ∪ {↓}, which means that {↑} ∩ {↓} = {∅}, the additivity axiom
states thatP (Ω) = P ({↑}) +P ({↓}) and thereforeP ({↑}) +P ({↓}) = 1. Notice
that if we relax the normalization axiom, the additivity axiom will tell us that

P ({↑})
P ({↑, ↓})

+
P ({↓})
P ({↑, ↓})

= 1. (A.2)

Now, notice that

{↑} = {↑} ∩ {↑, ↓}, {↓} = {↓} ∩ {↑, ↓}. (A.3)

Then, we can write

P ({↑} ∩ {↑, ↓}, )
P ({↑, ↓})

+
P ({↓} ∩ {↑, ↓})

P ({↑, ↓})
= 1. (A.4)

Consider the classical scattering problem of sending a stream of particles towards
a thin foil, see figure A.1. Detectors are place in both sides of the plate. The experi-
ment register that some particles are reflected and some pass through the plate. Clas-
sically we idealize the physical problem by assuming that the detectors are located at
the same distance L and that the particles are thought as tiny balls with radius rp.
Also we assume that rp is significantly smaller than L. On the other hand, we will
only consider detections in a narrow region along the particle beam. Ignore how the
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Figure A.1: Scattering problem. The target is a thin foil.

detector is placed in the same spot of the particle beam generator. Then, the prob-
lem becomes a one dimensional problem. Mathematically, the assumptions allow us
to place the detectors at x → −∞ and x → +∞. Therefore, the target is located
around x = 0. On the other hand, the stream of particles are assumed to carry the
same momentum p0.

Let us call {↑} the event of the particles passing through the target and {↓} the
event of particles reflected. We then can consider the case in which some particles
of the incoming beam pass through and other are reflected. Thus, P ({↑, ↓}) is as-
sume to exist but we do not know its value. Then, P ({↑}∩{↑,↓})

P ({↑,↓}) is interpreted as the
probability that particles pass through given that both detectors record a signal and
P ({↓}∩{↑,↓})
P ({↑,↓}) as the probability that particles pass through given that both detectors

record a signal. This are conditional probabilities. Then, we see that the sum of con-
ditional probabilities, do to the additive axiom, is one.

Now consider the quantum interpretation of the scattering problem. Now con-
sider the de Broglie wavelength of the particles λp instead of rp. AgainL� λp. We
also consider scattering states, which are not normalizable, and the momentum of
each particle is k0. The target is the compact potential. The coefficient of the incom-
ing plane wave is c and the coefficients of the reflected and transmitted plane waves
are r(k0) and t(k0) respectively. Conservation of the probability flux gives

|r(k0)|2

|c|2
+
|t(k0)|2

|c|2
= 1. (A.5)

Then we consider

P ({↑, ↓}) = |c|2, P ({↓} ∩ {↑, ↓}) = |r(k0)|2, P ({↑} ∩ {↑, ↓}) = |t(k0)|2.
(A.6)
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Hence, |c|2 corresponds to the probability that after sending the incoming plane
wave, there will be a reflected plane wave and a transmitted plane wave. Then, Pr =
|r(k0)|2
|c|2 , Pt = |t(k0)|2

|c|2 are indeed conditional probabilities.
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Appendix B

Ground state wave function of the
harmonic oscillator

For a one-dimensional quantum problem, consider the probability amplitude 〈x2, t2|x1, t1〉.
Using the evolution operator Û(t, t1) = e−

i(t−t1)
~ Ĥ .

〈x2, t2|x1, t1〉 = K(x2, t2, x1, t1) =
∑
n=0

ψn(x2)ψ∗n(x1)e−i(t2−t1)En~ , (B.1)

where Ĥψn = Enψn. The propagatorK has a path integral representation

K(x2, t2, x1, t1) =

x(t2)=x2∫
x(t1)=x1

Dx(t) e
i
~S[x(t)], (B.2)

with

S[x(t)] =

t2∫
t1

dt

(
m

2

(
dx

dt

)2

− V (x(t))

)
. (B.3)

Then, the amplitude can be written as

〈x2, t2|x1, t1〉 =

x(t2)=x2∫
x(t1)=x1

Dx(t) e
i
~S[x(t)]. (B.4)

Consider now the euclidean version by taking t = −itE , then

〈x2, tE2|x1, tE1〉 =
∑
n=0

ψn(x2)ψ∗n(x1)e−(tE2−tE1)En~ . (B.5)

Let x1 = 0 and tE2 = 0, we get

〈x2, 0|0, tE1〉 =
∑
n=0

ψn(x2)ψ∗n(0)etE1
En
~ , (B.6)
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and thus, the ground state ψ0(x2) can be computed from

ψ0(x2) ∝
x(0)=x2∫

x(−∞)=0

Dx(tE) e−
1
~SE [x(tE)], (B.7)

where

SE [x(tE)] =

0∫
−∞

dtE

(
m

2

(
dx

dtE

)2

+ V (x(tE))

)
. (B.8)

Evaluating functional integrals (i.e. path integrals) is hard and we know how to com-
pute them only if the Lagrangian is quadratic in its variables. For this reason let us
consider the euclidean harmonic oscillator

LE =
m

2

(
dx

dtE

)2

+
mω2

2
x2. (B.9)

Notice that the potential is inverted and now we have an unstable maximum. The
action can be written as

SE [x(tE)] =
m

2
x(0)

dx

dtE
(0)− m

2
x(−∞)

dx

dtE
(−∞) +

m

2

0∫
−∞

dtE xÔx, (B.10)

where
Ô = − d2

dt2E
+ ω2 (B.11)

The classical equation of motion is d2xc
dt2E

= ω2xc and the solution is of the form
xc(tE) = AeωtE + Be−ωtE . Since the path integral demands that x(−∞) = 0,
x(0) = x2 we find that the classical solution is xc(tE) = x2eωtE . Since Ôxc = 0,
dx
dtE

(0) = ωx2 and dxc
dtE

(−∞) = 0, the on-shell action gives

SE [xc] =
mω

2~
x2

2. (B.12)

and moreover the factor
e−

1
~SE [xc] = e−

mω
2~ x

2
2 , (B.13)

reproduces the ground state wave function. This suggest that the path integral should
be computed by assuming

x(tE) = xc(tE) + ~η(tE), (B.14)

where η corresponds to the quantum fluctuation around the classical path xc. These
fluctuations must obey η(0) = 0 = η(−∞). Then

SE [xc+η] = SE [xc]+~

m (
η

dxc
dtE

)∣∣∣∣0
t→−∞

−
0∫

−∞

mη

(
d2xc
dt2E

− ω2xc

)+~2SE [η].

(B.15)
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and therefore
x(0)=x2∫

x(−∞)=0

Dx(tE) e−
1
~SE [x(tE)] = e−

1
~SE [xc]

η(0)=0∫
η(−∞)=0

Dη(tE) e−~SE [η]. (B.16)

For the harmonic oscillator we see that the remaining path integral must give a con-
stant. Beyond the harmonic oscillator, the semiclassical ground state can be com-
puted from the integral by taking ~→ 0. Thus we find

ψsemiclassical
0 (x2) ∼

∑
i

e−
1
~SE [xic], (B.17)

where the sum is taken for all possible euclidean classical solutions that satisfy the
boundary data. Notice that the right hand side of

ψ0(x2) ∝
x(0)=x2∫

x(−∞)=0

Dx(tE) e−
1
~SE [x(tE)], (B.18)

is viewed as a mathematical technique to find the ground state. The physical input
is x(0) = x2 and the action S. The euclidean time and action, together with the
boundary data corresponds to a prescription not a areal physical system.

In order to enforce this interpretation, notice that after fixing x1, t1 the propa-
gatorK satisfy Schrödinger’s equation. By splitting x(t) = xc(t) +~η with η(t1) =
0 = η(t2) we find that an action with potential V (x) result

S[xc + ~η] = S[xc] + ~2I[η, ~), (B.19)

with

I[η, ~) =

t2∫
t1

dt

(
m

2
η̇2 − 1

2!
V ′′η2 − ~

3!
V ′′′η3 − ~2

4!
V ′′′′η4 + . . .

)
, (B.20)

and therefore

K(x2, t2, x1, t1) = A e
i
~S[xc] A =

η(t2)=0∫
η(t1)=0

Dη(t) ei~I[η,~), (B.21)

where xc(t1) = x1 and xc(t2) = x2. In the limit ~→ 0, we find

ψ(x2, t2) ∼ e
i
~S[xc]. (B.22)

Notice that xc(t1) = x1 is not provided but must be fixed. Let us consider again the
harmonic oscillator. We have shown that for a classical solution of the form

xc(t) = A cos(ωt) +B sin(ωt), (B.23)
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we have (
A
B

)
=

(
sin(ωt2)

sin(ω(t2−t1))x1 − sin(ωt1)
sin(ω(t2−t1))x2

− cos(ωt2)
sin(ω(t2−t1))x1 + cos(ωt1)

sin(ω(t2−t1))x2

)
. (B.24)

Let x1 = 0, then

xc(t) = x2
sin(ω(t− t1))

sin(ω(t2 − t1))
, t1 ≤ t ≤ t2. (B.25)

The on-shell action resultS[xc] =
mωx2

2
2 cot(ω(t2− t1)). Due to the singularities of

the cotangent function we consider the analytical continuation t = −itE and thus
we find

cot(ω(t2 − t1)) = i coth(ω(tE2 − tE1)). (B.26)

From the hyperbolic cotangent function, we see that it is reasonable to consider tE2 =
0 and tE1 → −∞. This will select automatically the ground state. With this perspec-
tive, we see that the analytical continuation is a method of regularization.

On the other hand, by setting x2 to be a general point x at some arbitrary t, we
find that the semiclassical wavefunction is of the form

ψsemiclassical(x, t) ∝ e
i
~SE(x,t,x1,t1), (B.27)

where S is the Hamiltons principal function defined as

S(x, t, x1, t1) =

t∫
t1

du

(
m

2

(
dx

du

)2

− V (x)

)
. (B.28)

Hamiltons principal function satisfy Hamilton-Jacobi equation

− ∂S
∂t

= H

(
x,
∂S
∂x

, t

)
. (B.29)

Which has the form

− ∂S
∂t

=
1

2m

(
∂S
∂x

)2

+ V (x). (B.30)

Let us assume that S = −E(t− t1) +W (x)−W (x1) and therefore

ψsemiclassical(x, t) ∝ e−
i
~E(t−t1)+ i

~ (W (x)−W (x1)), (B.31)

and
E =

1

2m

(
W ′
)2

+ V (x). (B.32)

From this we find

∆W = W (x)−W (x1) = ±
x∫

x1

dx′
√

2m(E − V (x′)). (B.33)
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The classical allowed region corresponds to E > V and the non- classical region to
E < V . For the harmonic oscillator we get

W (x)−W (x1) = ±mω
x∫

x1

dx′
√
`2 − x′2, `2 =

2E

mω2
, (B.34)

where ±` corresponds to the returning points. The classical region corresponds to
x2 < `2 and the non- classical to x2 > `2. In the non- classical region we write

W (x)−W (x1) = ±imω
x∫

x1

dx′
√
x′2 − `2. (B.35)

After performing the integral we obtain

W (x)−W (x1) = ±imω

[
1

2
x
√
x2 − `2 − 1

2
x1

√
x2

1 − `2 −
`2

2
ln

(
x+
√
x2 − `2

x1 +
√
x2

1 − `2

)]
.

(B.36)
If we consider the positive solution, and set ` = 0, x1 = 0 we find

ψsemiclassical
0 (x, t) ∝ e−

i
~E(t−t1)e−

mω
2~ x

2
, (B.37)

where the factorE(t− t1) survives only if (t− t1)→∞.
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