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I Classical Newtonian dynamics

Assume that the dynamics of a particle, with mass m, moving a long a line and subject
to a force F'(x), is govern by the equation

mi(t) = F(a(t). M

The physical dimensions are [m] = M, [x] = L, [t] = T and thus the force must
have dimensions of [F] = ML/T?. This immediately imply that are characteris-
tics physical scales. For example consider F' = aur. Then the constant o must have
dimensions [a] = M/T?.

Now, let us multiply the equation by & to obtain % (ma?/2) = &F(x). We see
that for & = const. we must have F' = 0. Moreover, if the force can be defined as

dV (z)
Codz 2)

F(z) =

where V() is the potential, we will obtain

d /rm 4
Hence, the quantity
E= 24+ V(), (4)
is a constant of motion. It has dimensions of [E] = M L? /T? aswell as the potential.
Hence, the equation m@ = —V” has a constant of motion £ = 242 4+ V(z). On

the other hand, the equation is usuaﬂy interpreted as a initial value problem and thus
for an initial time ¢; we specify x1 = 2(¢1) and #1 = @(#1). This in turn sets the
value of Eto By = i3 + V(21).

‘We can interpret these results in a different perspective by considering equation
as the starting point. We specify x1 = x(t1) and #1 = @(t1) and therefore we
obtain

St + Vo) = 2% + V(@) 5)



where for the right hand side ¢ # 1. Taking a temporal derivative we get
0 = i(mi + V). 6)

Thus, either & = 0 or mZ + V' forall t # tq. If we consider & = 0 we will have

_ dv
0= dt
trivial dynamics we consider mZ + V'’ = 0 for all ¢ # (. Notice that in some sense

we have “derived” the equation.

and thus the potentia1 is a constant and thus there is no force. Then, for ano

This interpretation is exciting. To make more sense to it, first we consider an
auxiliary variable p defined as

p = mi. (7)
Then, we will have .
T .2
E = 2mp + V(z), (8)

and now the initial data is 1 and p;. Following the previously discussed logic, we will
obtain the expression 0 = 22 4 V'3 and naively re-write itas 0 = 2 (p + V') and
obtain p = —V". This is the equation for p but we do not derive the equation for ,
i.e. p = ma. This is only a problem if we want to interpret p and  as independent
variables. Notice that
0=y -y (i By Py (i- £ (9
m m m m m m
By demanding that £ % 0 and V' # 0 we obtain
p=-V' i==. (10)

Hence, we can interpret p and z as independent variables. In order translate this de-
mand in a manifest way let us define the function H(z, p) subject to H(z,p) = E.
This function has the form

1

_ L9
H =5 —p"+V(z), (1D
and therefore
2 2
oH _p OH _, O°H _O°H _, (12)
dp m ox 0xdp  Opox
Then, equation ([9)) gives
OH OH OH O0H dH
= (pr o )+ (- ) == I
0 Op <p—|— 6x)+8x (x 8p> dt ()

Recall that due to the form of H, it is an implicit function of time. If %—;f # 0 and
%—f for all t # t1, we obtain

OH oOH



with 1 and py given. This is a completely different way of thinking because we can
define H without considering the equation for x and p. The equations are obtained
by demanding H(x,p) = E. In order to specify E, x1 and p; must be given. If
we define the condition H(x,p) = E as an on-shell condition, then H is defined
off-shell. For example, we can have the off-shell quantity

dH OH . OH .
P T ()

which on shell gives
H
d— =0. (16)
dt on—shell
The obvious question is how to give, off-shell, the actual form of H? We know

at least that it must contain a term proportional to 2.

Let us use the knowledge of the Newton equation for the harmonic oscillator.

Then, we know that

1 1
H(z,p) = %pQ + imwsz. (17)

‘We then can interpret the system in a geometrical way. Consider R3 and the coordi-
nates X, Y, Z. By setting

X=z Y=p Z=H(p), (18)

‘We obtain an elliptic paraboloid R3 for Z > 0. When we goonsshell, ie. Z = E,
we obtain a curve perpendicular to this axis. This curve can be projected to the z-p
plane and notice that the curve is parametrized by . Now, in order to get a specific
projected curve we must select £y which correspond to set 1 and p;.

So we learn that in general, the solutions to the equations corresponds toacurve
in the z-p plane. This space is the domain of the function H (x,p). Now, consider
another function A(z, p). Then,

aA(m,p) = a—xw + 8—pp. (19)
On-shell we obtain q SADH OASH
aA(x,P) =9 ap  Op oz (20)
This motivates the definition of the foﬂowing quantity
1 0AO0B 0AOB
- = 2290 9298 I
s Al p), Bz, p)} = - o0 p ox (21)

The bracket {-, -} is defined off-shell and we have introduced A for dimensional rea-
sons. Notice that [A] = [zp]. Consider

OH 1 OH
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On-shell we find
.1 . 1

‘We stress the difference between on-shell and off-shell. Suppose that we have a func-

tion O(z, p, t). Then, off-shell we have

w0 _a0 90, 0. y
a ot or- Gpp’ (24)

and on-shell O 90 1
Equivalently, we can start off-shell with
1 00 0H 00 0H
MO =5 " o on (26)
On-shell we find
1 o0 . 00 . dO 00
MOHY =584 5P~ ~ o @7)

On the other hand, consider the fundamental expression

{z,p} =\ (28)

‘What is the physical meaning of A?> The constant is only relevant if we consider
the bracket. Otherwise is not fundamental since it does not appear directly in the
equations of motion. But if we consider it to be meaningful, we will have

N = (ML), (29)

Y ER Ny Sy LT 60)

Now if we work in a system in which the velocity is dimensionless, i.e. L = T, and
the mass is measured in terms of inverse Iength, ie. M = 1/L, we obtain

and therefore

_Zv [H] :Za (SD

and )\ is dimensionless so we can set A = 1. At this stage this seems completely non-
sense, later we will see that it is completely reasonable and that the bracket due indeed
has a fundamental role.



Now we are in position to generalize the system and called the objects by their
names. Suppose that we now have N particles over the line. Then, instead of consider
ax-p plane, we have R2V space, thisis called phase—space. The p’s are the momenta for

each particle. A point in phase-space is given by (x, p) = (', ..., 2N, p1,. .., pN).
Therefore, the Hamiltonian functioniswrittenas H = H (x, p), the Poisson bracket
as
1 N /0A0B 09A OB
—{A B = -— — .
Ve Bepl) = (g g )
= VxA -VpB—VpA-V«B. (32)
and o ‘ ‘
{27}y =0, A{pi,p;j} =0, {2',pi} = Ad;. (33)

Again, the equations of motion are obtained from the on-shell condition H (x, p) =
E where E is the energy of the system. Recall that H canbe seen as a 2N-dimensional
R2N+1 a5 discussed for the harmonic oscillator.
Onshell we obtaina (2N —1)-dimensional surface and its projection to to phase space
is denoted as €. Per each E there is a hypersurface Q. Initial conditions will select
one among all of them and the solution (x(t), p(t)) corresponds to a curve defined
on Qp. Notice that only for N = 1, Qg correspond to curve and if the particles
move in R™ we consider 2nN instead of 2N. The equations of motion are

surface in an extended phase space

S 87H nl_ oH 34
p=-20 @=L ()

which can be written as
p=—-VxH, x=VyH. (35)

‘Waith this notation, the off-shell quantity d H /dt can be written as

dH

Now let us consider how the hamiltonian H changes under perturbations. Let
H' be the hamiltonian of the perturbed system and H the hamiltonian of the un-
perturbed system. For the later, we assume that we have a solution of p = =V, H,
x = VpH with (x(t = t1),p(t = t1)) given. The (2N — 1)-dimensional surface
Qp, is defined and we know the curve on Q. For the moment, let us think H” as
a completely independent system with repspect to H and the position and momenta
are label by x’ and p’. The on-shell condition H" = E' will give p’ = —V H’,
x! = VprH' and Q. In order to relate both systems, we see that £/ must be of the
form E' &~ E + ¢ where the energy ¢ is considered to be small. Then, the Qg hyper-
surface corresponds to the Qg hypersurface with small perturbations. Then, we can
consider X' = x + dx and p’ = p + dp where the functions dx and dp are small and



parametrize these perturbations. To clarify we can denote them as §x = €;7(x) and

—

Op = €2((p) where €1 and €3 are small parameters that control the perturbation.

We can use these linear splittings ff-shell to obtain

H,(X,,p/) ~ H/(X/,p,) +vx/Hl

Ox+ VPIH’

X’:x,p’:p'ép'

(37)

x'=x,p’=p x'=x,p’=p

In order to recover the on-shell condition E/ =~ E + ¢, then we must have that

H'(xX,p') H(x,p), (38)

x'=x,p'=p

and thus
H'(x',p’') ~ H(x,p) + VxH - 6x + VpH - ip. (39)

OH' __ 0z7 OH' and (gac” _
)

_ ' Ozt~ 9z" Oxd
5 + ey 2 Then, SH; = (5g n 0(61)) 2 (H+0(e1)) = 2L 1 O(e).

To justify the above expression notice, for example, that

’ Ox't ox?

Therefore, on-shell we obtain
E' ~E—p-dx+x-6p. (40)

It remains to contemplate the initial conditions. Since we know them for the unper-
turbed system we need to specify them for ¢ = 1. Notice that the case in which the
perturbation are zero, basically we have that the perturbations modify the curve but
not the hypersurface. Therefore, the displacements §x and dp play no physical roll
and thus they can be interpreted as virtual. They generate virtual curves. In order to
justify this interpretation and provide an example of their usefulness, consider the

off-shell quantity p’ x' — H' (x', p’). We find that
. d
p'x'—H'(X',p') ~ px—H(x, p)+p-aéx+5p-)'c—VXH-5x—VpH~5p. (41)
Notice that the above can be written as
) . d ) :
p'x'—H'(x',p) & px—H(x,p)+ 3, (p-0x) (P + VxH)-0x—(x = Vp H)-dp.
(42)

Due to the time derivative, let us consider the integral of that expression

to to
/dt(p’-)&’—H’) R /dt(p‘)'c—H)—i- (p-(5x)|§f
t1 t1
to
+/dt (p+VxH) éx— (x—VpH)-p].(43)
t1

to
Provided that 0x vanishes at ¢ and tp, the quantity [ dt (p - X — H) remains the
t1

same on-shell. This is pleasing but conﬂicting at the same time. We have argued that



dx and dp must vanish at ¢1. This is equivalent to say that the equations are subject
to initial conditions. But here, the equations have the “boundary” condition, i.e. x is
given at t; and tp which are boundary points of the time interval. The specification
of p at ¢ is translated to the specification of x at t5. Can we solve the equations of
motion with the “boundary” condition consistently? To illustrate that this is indeed
possible, consider the N' = 1 case with p = F'(x) and p = ma. Consider the time
derivative of the equations and plug the equations into these expressions. We obtain

F/
p=—p, F=mi. (44)
m

Now we solve the equation of z, the equation that we start with! The particular so-
lution is of the form x(t) = ¢121(t) + cawa(t). Since we know x(t1) and x(t2), we

() = (e ) () @

If the matrix is invertible, i.e. @1 (t1)x2(t2) — x2(t1)z1(t2) # 0, we can solve the
problem and use p = m.t to give the expression for the momentum. For general case
N the problem is solved provided that the corresponding matrix is invertible. Notice

have a system

that E is specified now after computing the form of p and evaluating it at ¢;. Now,
the fundamental point is to interpret the expression given in equation (43)) to derive
the equations of motion in another way. We define the action S[x, p] as

S[x,p] = /dt (p-x— H(x,p)) (46)

The action is consider to be a functional and thus we make contact with the calculus
of variations. Then, the vircual displacements corresponds to variations. Hence,

0S = S[x+x,p+0op]— S[x,p]
= (p-éx)if+/dt (P+ VxH) 0x— (x—VpH)-0p]. (47)

t1

Provided that 0x(t1) = 0 = 0x(t2), by demanding 05 = 0 we obtain p = —VH
and x = VpH. This is known as Hamilton’s principle. In words, the extremum
of the action gives the equations of motion. Notice that we do not know if the ex-
tremum corresponds to a minimum or a maximum. In geometrical terms, among all
the possible curves on Qg, with x(t1) and x(t2) fixed, the curve that gives the solu-
tion is the one that extremize the action. The rest of curves then are virtual and thus

unphysical.

We stress that we deal with a “boundary” problem for x rather than an initial
value problem for x, p. There are no conditions on the momenta at any time.



Notice that with the Hamiltonian and the action, we have an off-shell language
to define the theory. The action by itself, seems just a gadget like the Poisson bracket.
In the following we will show that these objects lead us to a framework where we can
discuss isometries (symmetries of phase space) and physical conserved quantities.

In order to do so let us study transformations of the form X = X(x, p,t) and
P = P(x, p,t). If we demand that the transformations satisfy

(X", X7} =0, {P,P}=0, {X' Pj}=A\d. (48)
Then, for the functions A(X, P) and B(X, P) we find off-shell
0A OB [, o« 0A OB
o Bher = — X' o KX Zap aP;, ap, o bt
i 0A 0B 0A 0B
+Z{X Fi <aXz » ag-axi)’
= {A,B}XB (49)

We see that the transformation preserves or leave invariant (off-shell) the Poisson
bracket. These transformations are refer as to canonical transformations. Now con-

sider x4 = (X%, P}), £&* = (2!, py,). Then, equation we can write {x4, X} =

AeAB where € = 0, €' = 5;,, I = —(5;-/ and /7" = 0. Similarly we also consider
€ to obtain
QXA 8XB
A _ B b
A=A T (50)
a,b

If we consider N particles moving in R”, all indices run from I to n.N. Then, we have

;Ze (XA xBr= A = ZZG e“baXAE:)\detJ (51)
(nN)!A7B AB1X » X (nN)!A’B < AB 850‘ 8€b )

where .J is the Jacobian matrix. This imply that det J = W D ABEA petB =1
and thus we conclude that transformation is invertible.

Consider the case on which X = X(x,p) and P = P(x, p), refer as to re-
stricted canonical transformation. The trivial example of such transformation is the
identity transformation X* = >, dpa®, Py = 3} 07py. A no tr1v1al'trar}sform/a—
tion corresponds to global translations in phase space, ie. X' = >, 6}, (2! + "),

! .
Pj=3% 5;? (pr + by), where a'', by, are constants. Now consider

k

In order to be a restricted canonical transformation we must have

> R0 RS = 5. (53)

LU



In matrix notation we get RIR = 1. Then, det J = det Rdet R = 1. If we restrict
ourselvesto R = RT we find that the transformations correspond to spatial rotations
in phase space.

This opens the beautiful door of using symmetries as guidance principle. For
example consider the hamiltonian for free particles and with any loss of generality
we set their masses set to unity. Then,

1
H(x,p) =) 50" pipi. (54)
ek

The equations of motion are

da! d
=Y TE =0 (55)

It is straightforward to check that the Hamiltonian and the equations of motion are
invariant under global spatial translations X* = 3", L@+ d), P =3, 5;-“]%
The equations for the momenta tells us that ) °, py, is a constant of motion, i.e. the
total momenta is conserved. An equivalent statement of this is that ), pra® is con-
served. Hence, we see that invariance of the hamiltonian, realized off-shell, gives a
conserved quantity after going on-shell. On the other hand, since >, y 5 PJX i s
invariant we see that the action is also invariant off-shell.

Now consider the rescaling transformation
Xt :a25f/:pl/, P; :a25fpk, (56)
4 k

where o # 1. The Hamiltonian and the action are not invariant but the equations of
motion are invariant. This is not a surprise since the transformation is not a canonical
transformation (unless @ = 1)) but it shows us that invariance of the equations of
motion not necessarily implies invariance of the off-shell quantities. If the action and
Hamiltonian are indeed invariant, then it is insured that the equations of motion are
invariant.

The action shows us how to find the conserved quantity. First we use the action
with arbitrary variations and the respective boundary condition to derive the equa-
tions. Then we consider the promotion of the a'’ to be functions of time. Since
Xt = 3,8 (2" 4 a), the variation is taken to be 6! = a with a' small. The
variations for the momenta are zero. For this particular variations and Hamiltonian
we obtain

to
5S:S[X:x+5x,P:p+5p]—S[x,p]:/dtp-a. (57)

t1



We can write the expression as

to

5S:p-a|§j+/dtp-a. (58)

t1

If we now consider the equations of motion we obtain

5S|onfshell =P a|2 : (59}

Weseethatp-a=) pra® must be conserved.

Let us now consider spatial rotations X' = >, Ria', P = Ek(RT);?pk.
We write R = e where w is another matrix. The action and the hamiltonian are in-
variant. Since det R = 1 we use det R = ™0 e&xP(@) ¢4 conclude that Trw = 0 and
wl' = —w. Let the coeficient of the traceless matrix be small and time dependent.

Then, we have R & I + w. The variations are now taken to be 62! = 3, w,a" and
(5pk = Zk’ (U.)T)ilpk/. We find

to

k.l
5s‘on—shell = Zpkwl T ’ <6O>
I,k

t1

Andthus ), , prw)a! must be conserved. Notice that the quantity can be written as

T:

Dok wiz'p* and since w —w, we need to antisymmetrized the product ztpF to

obtain a non-zero result. Then
S wpalpt = = 3 walpt - 2t Gy
5 )
1k Ik
Hence we conclude, that

L = glpk — gkl (62)

must be conserved. We can corroborate by computing L' This is the conservation
of angular momentum.

['he variations consider so far can be written as
1 1 1 /
I _ ! k I _ ! 'k
or' = X{CL‘ , Ek pra”}, ox' = X{m 5 lE/k wpr L7} (63)

Thus, we see that the momenta and angular momenta are the generators of infinites-
imal spatial translations and rotations respectively‘

We know, by construction, that the energy is a conserved quantity. How do we see
it from the action point of view? Notice that space transformations are embedded in
the formalism in a natural way but time does not. This should be clear that the action
is an integral over time.

I0



Let us consider X*(¢') where t' = ¢ + f(t). Let f(t) be small and thus

dx?
dt’

Xt ~ X'(t) + f(t). (64)

t'=t

If X is related to a canonical transformation (not restricted) of 2! then we identify

Xi(t) => 5fxl(t). Then,

X(t) ~ 51 () + £ (D). (65)
l

The variation of the transformation is §2! = @ f(t) and for the momenta is defined
analogously as 6p, = prg(t). On-shell, they can be written as

5!IJZ = {IL‘Z, f(t)H}v 5pk = {pka g(t)H} (66>

Hence, the Hamiltonian is the generator of time translations. For the action, we con-
sider the variations 6! = 4! f(t) and dpg = prg(t) to obtain

5S|on—shell =Pp- Xf(t)‘ﬁ =Pp- pf(t)’fti = 2Ef(t)’ffi : (67}

‘We have seen have transformations that leave invariant the action and that also
are canonical transformations are related to conserved quantities. The language of
these invariances is off-shell but the conserved quantities we need to use the equa-
tions of motion. We see that symmetries of the action and hamiltonian are powerful
and thus may serve to construct theories. Of course, one has to first postulate the
symmetry and through experiment (i.e. solutions of the equations of motion) check
if they are physical. For example, we can study potentials V' that are invariant under
spatial translations and rotations.

We discussed three types of transformations that indeed are realized in nature
that also are canonical transformations. This is not a rule. The fundamental quanti-
ties are the action and the hamiltonian. Therefore, we can have symmetries that are
not related to canonical transformations at all. On the other hand, not every sym-
metry of the hamiltonian is symmetry of the action and not every symmetry of the
action leads to a conserved quantity. For the former consider the hamiltonian of the
free particles with the transformation p — —p with x unchanged. For the later con-
sider p — —pand x — —x. The problem with this case is that we cannot write an
infinitesimal version of it, i.e. the identity transformations plus the variation.

There is another quantity that it will be fundamental for quantum mechanics.
Let us define the function

S(x,1) = /t a <p - % - H(x,p)> . (68)

t1

I



By definition we must have S(x(t1),t1) = 0 and S(x,t) is known as Hamilton’s
principal function. From

S:p-k—H(x,p):VxS-X—l—%. (69)
Provided that
VS =p, (70)
we find 55

The above is known as the Hamilton-Jacobi equation and suggest that S should be
of the form
S(x,t) = W(x) —W(x(t1)) — C(t — t1), (72)

where C'is a constant and now V4 W = p. Then, we obtain
H (x, VW) =_C. (73)

On-shell we find that C' = E. Let us consider the Hamiltonian for the free particles
. Then,

1
§VXW VW =E, S(x,t) =W (x)—-W(x(t1)) — E(t —t1). (74)
The solution of the remaining equation is W (x) = £p - x. Thus,
S(x,t) =2p- (x—x(t1)) — E(t — t1). (75)

The function §(x, t) computes the on-shell action without using the equations of
motions for x and p after setting ¢ = t2.The equation that we solve is an equation
for the function W (x). Let us see this more clearly for the harmonic oscillator. We
have ) )

2 2

H(z,p) = %p2 + 5w T (76)

The equations of motion are
p=mi, p=—mwie. (77)
Taking a derivative of the equations and using them we find

P+wlr=0, p+wp=0. (78)

Then, we solve for x with z(t1) and #(t2) given. Using p = ma we obtain the solu-
tion for the momentum. In general we can write the solutions as

x(t) = c1 cos(wt) + casin(wt), p = —mwe sin(wt) + mweg cos(wt), (79)

12



where A and B are functions of z(t1) and z(t2). Then, E = mw?(c? + ¢3). The
on-shell action gives

= mw / dt[(c3—c?) cos(wt) sin(wt)+cocy (2 cos®(wt)—1)|—E(ta—t1).

t1

S‘onfshell

(80)
It remains to solve the integrals and then write the answer in terms of #(t1) and 2(t2).
Using S(z,t) we just need to solve

[ , mw?
W(z) =+£V2mE dz' /1 — S5 (81)
(t)

For this case the integral can be performed. Hence, we see that the function S(z, )
it is useful for computing the equations of motion provided that W () can be com-

puted.

On the conceptual point of view, off-shell S(x, t) corresponds to the action with
the end point free. Moreover, it also indicates that the momentum is not an indepen-
dent variable as the in the case of the Hamiltonian. On the other hand, let us consider
a free particle with mass m moving in R3. We have

S(x,t) =xp- (x —x(t1)) — E(t — t1). (82)
Let us now consider the dimensionfull constant A and consider the dimensionless
quantity
_ 1
S(x,t) = XS(X, t). (83)
Then we can write
S(x,t) = k- (x — x(t1)) — w(t — 1), (84)
with
p=2Xk, FE =)\, (85)

where [k] = 1/L and [w] = 1/T. Since we now that E = 5-p? thenw = ﬁkz‘
Therefore,

S(x,t) = +k - (x —x(t1)) —w(k)(t — t1). (86)
We can relate, mathematicaﬂy, S (x,t)toa Wavepacket
U(x,t) = /dk A(k) St (87)
In order to reproduce w = ﬁkz, the wavepacket must satisfy
0 A2
A—T = - V20,
M@t 5 Vi (88)

I3



This is the birth of quantum mechanics as a matter-wave theory. We see how \ plays

a fundamental role, it corresponds to h. Following Dirac, the canonical quantization
rocedure is to consider !, pj as operators 2%, px. that satish

p Pk as op Pr y

1 ., . N
%[xlapk‘} = 5217

Lo Lo
F3,2" ] =0, —[pk ] =0, (89)

where [2!, pp] = 2'pr — Pra!. We have the replacement

1 1
X{.’.} — %[.’.]. (90)

With this rule we, in the Schrédinger picture, we consider W to be an eigenfunction
of the position operator X and p = —ihVx. Then, we quantize the Hamiltonian.
Notice that the later can achieved without ambiguities for Hamiltonians that not
include terms such as x - p. After taking the above rules and considerations, we ﬁnaﬂy
write the Schrédinger equation

o . .
iU = Y, = H(%,P). (91)
In order to solve this equation, let us consider ¥(x,t) = ¢E(X)e_i%(t_tl). Then,
we obtain the time-independent Schrédinger equation

Hyp(x) = Eyp(x). (92)

Notice then that ¢ (x) is a eigenfunction of the position operator and the quantized
Hamiltonian. Moreover, the Hamiltonian must satisfy H' = H in order to obtain
real energies E. The key point is that once, we solve the above equation we will find
that the energy is quantized, ie. E — E,,. Then the full solution is of the form

U(x,t) = g, (x)e 070, (93)

This gives a superposition of solutions with energy Eyp,. Together with the Born rule,
we find that quantum mechanics is radically different from classical mechanics. For
the rules that are not going to be discussed, we refer to the reader to any serious text-
book in quantum mechanics. Here, we only emphasize that equation is the quan-
tum analog of the on-shell condition for the classical Hamiltonian.

We see how the Hamiltonian, A and the Poisson brackets play a fundamental role
as advertised. What about the action? In some sense we already took into account
the action by writing the wavepacket. But in the following section will show that it
drives another quantization method, the path integral approach. For the moment
notice that the action is compatible with the uncertainty principle. The boundary
conditions are set on the initial and final positions and there is no condition on the
momenta.
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We end this discussion by considering the wavefunction of the form
U(x,t) = en b, (94)

The Schrodinger equation for the free particle becomes

0 1 .5
Notice that
pYU(x,t) = (V&)U (x,1). (96)
Then, we have 5 " .
_ Y _ M R 2
8t6 2va6 + o (Vx6)~“. (97)
In the limit A — 0 we find
%133)6 =S, %%VXG =p. (98)

Hence, the semiclassical behavior of the wavefunction is of the form

lim W(x, t) = enSh), (99)

2 Path integral in quantum mechanics

‘We now that a classical theory can be defined off-shell from the action

to

Six,p] = /dt (p-x— H(x,p)) (100)

t1

The equations of motion follow from Hamilton’s principle 0.5 = 0. The equations
for the position are subject to boundary conditions and the momenta have no condi-
tions. The solution corresponds to a curve over the hyspersurface at constant energy
Qp. In general, there will be infinitely many virtual curves for x(¢1) and x(2). Classi-
cally they have no meaning except only the one that corresponds to the solution. Time
corresponds to the parameter of the curves. Let us consider the curves projected to
the position space and we will referred to them as paths. Thus, there are inﬁnitely
many virtual paths for x(¢1) and x(t2) and the classical path satisty the equations of
motion for x. Of course there are infinitely many virtual paths in momentum space
but their endpoints are deduced not given.

In the las section we saw that the semiclassical behavior of the wavefunction is of
K3 . . . .
the form e#°, where S corresponds to the action with the end point not specified.

Now let us consider A
enSbopl, (101)
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i

Since the action is a function over all possible paths, then also e SBPl Consider now

the sum over all possible paths Weighted by the factor e%s Pl e,

3 3 on Sl (102)

Wiréiti(stiln)}ﬁ;fétr(;}S)P;;?jen paths in momentum space
Let us assume that the above quantity exists. At this point, we can only interpret
that this quantity is related to the time evolution of the system and thus it has to
be directly related to quantized Hamiltonian. This seems to be naive but notice that
among all the paths there is a the classical path, the one that corresponds to a solution
of the classical equations of motion, and we know that the classical Hamiltonian is
the generator of time evolution.

With the goal of interpreting sum over all paths, let us consider a particle moving
in R. Then, we have the position operator & and the continuous basis |z) with

o0

z|z) = z|x), % / dz|z)(z| =1, (@|z) = £5(2" — x), (103)

—00

where £ is introduced so that the vector |z) are dimensionless. Due to the properties
of §, we have

(2 —x)=8(2' /0 —x/0). (104)

On the other hand we have the momentum operator p and the continuous basis |p)

with
oo

R 1 N
oo =slph [l =1 0l = ki - p). (109
where £ is also introduced so that the vector |p) are dimensionless. The basis are

related by

W=y [ del)l o) = [ bl a0

The quantity (x|p) corresponds to the transition function and we denoted as f(, p)
and (p|z) = f*(z,p). From

W) =y [ el W= [ @), o)
we ﬁnd
/duwwﬂaﬁvuwﬁzaﬂm—mm, /d@ﬂaﬁumv@nnzﬂfw—w@.

(108)
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Due to the integral representation of §, we find that f(z,p) = L+ Demand-

var
ing pf = pf, with p = —ih0,, we find that k = h as expected. Hence
1
p) = ik 109
flw.p) = Z=e (109)
and . .
1 dx iy dp _4bz
_1 4 e s o 110
=1 [ e ® =t [ e (10)
Then, a general state |1)) can be expressed in term of these basis
) oo 0o dp
=1 [ae. W=t [ Lpew.

In order to have a probabilist interpretation we demand (1[1)) must by finite, i.e.

1T [d
¢ [l <oe ¢ [ LioloP <. (112)

From these we see the wavefunctions f(z, p) satisfy
[ s @i fen) = - ). [ o @prla ) = b’ - o)

(113)

and thus, alone, they are not suitable to describe a state.

The time evolution of a state is given by the time evolution operator U. For time-
independent Hamiltonians, as in our case, it takes the form

Ut ty) = e nt=H, (114)

Let us assume that at ¢; the state of the system is given by the superposition
i i
i) = 7 / a! ) (lis ), 7 / & |(@li, t))? < o0 (I15)
) —o0o

The state evolves to a final state at ¢ as
[fta) = emi = i ), (116)

This state also have the expression

1 Vi 1 yi
]f,t2>:€/dx"|m”)<x"[f,t2), g/dx”|<x”]f,t2)|2<oo. (117)
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We find that

Wit =7 [ a0t t)la") i), (115)
For 1
H= %ﬁ +V (&), (119)
we have R _ o
(2|0 (b2, 1)) = (2| #(C=0 (zm V @) ). (120)
The above can be expressed as
@O (b, 1)) = 0 I ek —a)~H @ p)(t-1)) DI

We see the first hint of the action after looking the argument of the exponential in
the momentum integral.

Let us focus in the free particle, we obtain

" /

) 2
NGt )2y = £ gkt 3 () 122
@0 (k2 t0)lo') = &y [ 5 e = (122)

Notice that the on-shell action for the free particle is

" N2
m (J? — T ) /" /
Stree[Ts D] on—shenn = 5 on ) T z(t2), 2’ =x(t1). (123)
2 — U1
This is intriguing since we have recover a semiclassical result without taking a semi-
classical limit. Moreover, the expression suggests that the square root pre—factor must

take into account non classical behavior only.

ince no measurement has been taken into account, there is no position state
S has b k h p
preferred at t1 and to, i.e. we have infinitely many matrix elements (2" |U (t2, t1)|").
In the Copenhagen interpretation we consider a measurement and the initial state
“collapse” or “reduced” toaspecific position. Let us assume that it reducesto |7, 1) —
x1)(x1|t, 1), i.e the position at 1 1s 1. Then, the final state takes the form

,t he p t Then, the final kes the f«

fit) =3 [ o) O e t)o). (124)

‘We then only can compute the probabilities of finding the free particle at t3 between
the region " and 2" + dz”, ie. %|<l’”|f](t2, t1)|z1)[*dz”. Among infinitely many
positions, let us consider #” = x2. Thus

m

1,
z Ulty, t 2dopg = ———
[(22|U(t2, t1)[21)[ "o St — 1)

; dSEQ, (IZS)
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corresponds to the probability of a free particle that was initially located at 1 at
willbelocated inaregion [x2, 22 +dxo] at the instant £5. This is actually a conditional
probabﬂity triviaﬂy realized. In fact, if no measurement is consider we have

1

P(z; <2’ <xp4dr)dd’ = Z!(m’]z’,tlﬂzdx', (126)
1

P(xy <2 < a9 +dao)da” = Z!(x”\f, t2>\2dx”. (127)

These corresponds to unconditional probabilities if | f, t2) and |7, t1) are not related.

This is not true for our case since | f, t2) = U (t2,11)|4, t1), i.e. the probability ampli-
tudes are related by

oo

/ da’ (2" |U (Lo, t1)|2') (2 ]i, t1). (128)

—00

| =

("] f,t2) =

Without any measurement at t; we can only have the conditional probability that
the free particle will be located in a region [x2, 22 + d2] at the instant ¢5 given the
probability that it was initially located at 21 at t1. The measurement removes the un-
certainty at ¢; by telling us that the probability that the particle is located at @ is 1.
Hence, we conclude that §|(z"| U(t2,t1)|21)|?da” is in reality a conditional proba-
bility. To enforce this interpretation we see that the sum of all conditional probabil-

ities -

1 N

b [ @10 e = @) = 60) (129)
diverges. For the free particle we have [(z”|U (ta, t1)]2")|* = S and thus

divergence is due to the integral for finite time interval.

From the evidence of the free particle we consider

<$/,’U(t2,t1)|$l> _ Z Z e%S[C&p}' <130>
paths in position space paths in position space

with z(t1)=a’ and z(tg)=a'/ given

If the above is true, we see that the right hand side corresponds to a conditional prob-
abﬂity amphtude. From the direct result, it is reasonable to consider the splitting

r=T+hn, p=p+hi, (131)

where 1) and ( are considered as quantum fluctuations and Z, p classical terms. The
later must be the responsible of the phase factor. With this splitting the action be-

comes
2
Sfree[xap} = Sfree[jaﬁ] +h (]577) 2 + h/dt [(i' _ﬁ/m)c —1577] + thfree[na C]
t1

(132)

19



Let Z, p satisty classical equations of motion with Z(t2) = 2" and Z(t1) = 2" and no
condition for p. Then, we must have 7(t2) = 0 = 7(¢1) and no condition for ¢. The
expression reduces to

Sfree [:U, p] = Sfree [jv p] |on—she11 + hZSfI‘ee [n’ C] . <133>

and therefore

(@"|U(t2,t1)]2") = Z Z oiliStree[n.C]

paths in position space paths in momentum space
with ¢(t1)=0and ¢(t9)=0 given

Xe’% Sfree["z'vﬁ“on—shell . (ISA]_)

Notice that Stree[n, (] is purely off-shell quantity and we see that the virtual paths
contribute at the quantum level. In fact we must have

ihsfrcc[nvd m
Z Z ¢ ot 27Thi(t2 —tl)'

paths in position space paths in momentum space
with n(t1)=0and n(ty)=0 given

(135)

It remains to give a mathematical meaning to the sum over paths of the above expres-
sion. Let us divide the time interval into IV equal intervals €. Then,

t2 —t1 = Ne, (136)
and
to t1+e t142€ t1+Ne N—1 t1+(n+1)e
/&:/ﬁH /+m+ / dt =" /‘&. (137)
t t ti+e t1+(N—1)e =0 ¢ Tne

Now we approximate the paths to polygonal paths. Consider the expansions

. 1.
n(t) = n’t1+ne+ n‘tl+n6 (t_tl —TLG) + 5 n‘tlJr’ne (t_tl _n€)2 +7

() = Clyymet ¢ (t —t1 —ne) + : (t—t1 —ne)? +.

t1+ne 5 t1+ne o
(138)
Fort =t; 4 (n + 1)¢, € small and NV large we obtain

o ATln . n‘t1+(n+1)€ - n‘tlJrne

77|t1+ne T ¢ € )

(139)

and

N—1 ic h<| hAnn_(hC‘tl-kne)Q
t1+ne e 2m

eihsfree[n’c] — H e " <I4O>
=0
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The above can be written as

N-1 N-1 | hA 2
. i hA 2 im !
elhsfree[n:d ~ | | e_ 2mh€(hqtl+ne_m gln) | | e2ﬁe< en ) X (I4I>
n=0

n/=0

The sum over all the paths in momentum space translates to the sum over the pos-
sible values of ( |, +ne per each pol}/gon. _Tth of course correspc?nds to a integral
over ( |t1 e Since A ¢ |t1 tne has dimensions of momentum, the mtegrals must be
accompanied with a factor £/h. Therefore

N-—1 . hAn 2
> il T Joe()
paths in momentum space n'=0
N—-1 ; 0 , A
i oy hAM
% h / d(R Cly, pede 2ok €l e —m =)
n=0 00
(142)
The integrals that we need to solve are
o0
/ dy eia(y—b)2 _ ez’sgn(a)% (I‘B)
— 0
and thus
N-1 | hAn 2 2 %
3 il T oame(F) T miNg (W
he
paths in momentum space n’=0
(144)
For the remaining, we have
_ 2 2
Nl <hAnn/)2 i (Pleg e =Pnle))” p (B7ley2e=Rnley 10))
€ 2h € = ez € e2n € X e
n’=0
2
im (M1l V=)l (v -2)0)” i (7l NPl 4 (v—1)e)
Xe2h € e2r € .
(145)
Since n(t2) = 0 = n(t2), we obtain
— 2 2
= i G(hA""'>2 im (Bl 4¢) " i (Al 2e=hnle) 1))
H eQnLh € — eﬁ € eﬁ € X oo
n’=0
2
im (M1l (v =2)e =Pl e (v -1)))” iy Bl r (v -1y
X e2h 3 e2h € .
(146)
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Performing N — 1 integrals we obtain

T Dy hSieelndl ~ (2r)Ny/Ne T
L ) 2mhi(ty — t1)
paths in position space paths in momentum space

with n(tq)=0and n(ty)=0 given

(147)

This is promising because we recover the desired facto with the drawback is that in
the limit N — oo the constant (2)Vv/N diverges. We formally define a measure

N-1 / N—-1 1
[626p] = N };[0 5 0p nl;[l 740z, (148)

where AV is an inifnite normalization constant that cancels the divergent term (2)V v/ N.
Hence, the sum over paths then can be written as

dx(t2)=0
Y > = / / [6xdp].  (149)
thsin ition hsi )
withi?tlizopa(;sdno(t;)p:agegiven paths in momentum space dz(t1)=0

Since for the free case, the action of the quantum fluctuationsis the same as the action
of the classical solution, we see that we can undo the linear splitting to obtain
z(to2)=x"

(2|0 (ta, t1)|2) = [dadp] enSk=el, (150)

—

z(t1)=a'

Instead of using the symbol [dzdp] it is used N'Dx(t)Dp(t), we the final form is

z(t2)=x"
(2"|U(tg, t1)]2") = N / Du(t) / Dp(t) erSTP), (151)
z(t1)=x'

This is the path integral representation of the matrix elements (2" U(ta, t1)]'). No-
tice that the path integral by no means is a well define mathematical quantity. Nev-
ertheless gives the desire physical results. The above expression applies for classical
Hamiltonians of the form

H(z,p) = ﬁpQ + V(x), (152)

and the generalization to a system of N particles moving in R™ is straightforward.
Let us compute the path integral for the above Hamiltonian. We have

x :x// . t

(¢2) %ﬁdt (pi’—ﬁ]ﬂ—V(m))

N / Dx(t) /Dp(t)e ‘1 , (153)
z(t1)=a'
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which can be written as
t2
- fdt p—mi)? %fdt(m:i;2—V(x))
N / /Dp T ol . (154)

The momentum integral can be perform and its result is absorb into N to obtain

another N and

R alta)=a” i thdt (ma2-V(2))
(&[0 (t, 1) |2") = N / Da(t)e @ L)
z(t1)=a'

In the last section we deliberately avoid to mention the Lagrangian function. Here,
we see that emerges naturally and has the form

Lz, i) = %iﬂ — V(). (156)
Quantum mechanics was founded with the Hamiltonian function and the appear-
ance of the Lagrangian is solely due to the path integral approach. After defining the

momentum as

0L

p= %)

the equations of motion derived from the action, with dx(t1) = 0 = dx(t2), is the
Euler-Lagrange equation

(157)

doL oL dp

There is not obstacle for deriving the Hamiltonian for the Lagrangian given in equa-
tion ([[56)). Thus, it seems that nothing profound is happening. However, if we con-
sider relativity, it is the Lagrangian the quantity that is best suited.

With the notion of spacetime, the time coordinate is on equal footing of spatial
coordinates. Notice the Hamiltonian necessarily breaks this since on-shell it corre-
sponds to the energy of the system and thus is Lorentz co-variant rather than invari-
ant.

To clarify this point consider a free relativistic particle. We know that the parti-
cle trajectory generate a curve (or worldline) in Minwkoski spacetime. The action is
proportional to the lenght of such curve. If the particle has mass m we have

daH dxv

0
—T]ﬂyaa, /.,L,V:O,l,...,D—l, X :Ct, (I59>

x] = —me
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where cis the speed of light and 7., are the components of the metric of D-dimensional
Minwkoski spacetime RLP=1 with i, = diag(—, +, ..., +). Notice that we con-
sider D — 1 space directions and we are using Einstein’s summation convention, i.e.

o v
s ddiu % stands for

dx* dx”
——. 160
%;n“ du du (160)

In the action, u parametrized all possible worldlines and the action is actuaﬂy invari-
ant under reparametrizations. More important, the action is explicitly Lorentz in-
variant. Consider v = 29, then

to
S[a] = —mc? / dt /1 - 6%58, (161)
t1

mx

\/].—C*Q)(2

2.2

Since H =p-%x— Land %% = % we obtain

H = \/p2c? + m2ct. (163)

and thus
(162)

On-shell we find
dp _
dt

So far, everting looks good. Now consider the action

0, E=+p?c+m2ct (164)

to

S[x,p] = /dt (p-x— H(x,p)), H=+/p*c2+m3c (165)

t1

This action gives the same physical on-shell quantities but is not manifestly Lorentz
invariant. Moreover, if we want to consider its quantization, the Hamiltonian will be

H =/ —h2V2 + m2¢2. (166)

Now, let us return the action given in ([[59]) and now define the (D — 1)-momentum

as

oL mc nup%ip
du \ "o Ay “du
Then we will find that
dz?
H= pudi —~L=0, pup'+m?*=0. (168)
U
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From the second expression we derive

P’ = V/p? + m2c. (169)

This is the usual Hamiltonian but our actual Hamiltonian vanishes off-shell. The
second off-shell expressions p,pt + m2c? =0 plays a role of a constraint. In order
to incorporate this constraint off-shell, let us consider now the Lorentz invariant and
reparametrization invariant action

u2
dat
Slz,p, N| = /du <p#d:2 - NC) , C=pu" +m?e?, (170)

ur
We see that N under the reparametrization v’ = u’(u) transforms as

_du

M) = G

N(u), (I71)

inorder toleave the actioninvariant. *(u) and p, (u) transforma scalars, i.e. 2/*(u’) =
2#(u) and pj, (u') = pp(u). The equations of motion are

d dat
pup” + m?c® =0, % =0, —— =2Np~ (172)

We see that NV is dot dynamical and its equation gives C = 0. N corresponds to a
Lagrange multiplier. On-shell we find

L detdet
v du du

1 dxH dxv
2N = —\/ =N —— ) 17
me e du du ( 4>

Then from the equation for 2* we recover the (D — 1)-momentum

= —4N2pup“ = 4N?m?2c2. (173)

which imply

dz
Du = MCNup-g3, (175)

\ ~Tlpo (%p ddi:
The key point now is that we can canonical quantize the theory by demanding Cl) =
0.

So we have seen the advantage of the use of the Lagrangian over the Hamiltonian
when we want to incorporate relativity and quantized the theory. However the action
given in involves a square root and thus seems impossible to compute the path
integrals. For this reason consider the action

us
1 1 dat da”
Slx,e] = 3 /du (enwda;(; - m202e> , (176)
up
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where e is not dynamical asin the case of N and also makes the action reparametriza-
tion invariant. Its equation of motion is

1 dat dx¥ 2 9

If we insert this into the action we find

u u

1 dx# dz¥ dat dav

S[xaeon—shell] = /du (e"?uu ) = _mc/du —Nuv 5
ui

du du du du
U
(178)
Under parametrization, 2/ again transform as a scalar and
du
e(u') = we(u). (179)

Notice that e is not a Lagrange multiplier as N but rather an auxiliary field. In both
cases they are not physical and its presence is to realized reparametrization invariance.
Since we have seen that demanding Lorentz invariance lead us to reparametrization
invariance one may think that the later is a fundamental symmetry. It is not a real
symmetry but rather a gauge symmetry, i.e. it is a redundancy in our description. One
can think of it as the price to keep the theory manifestly Lorentz invariant.

The (D — 1)-momentum and Hamiltonian result

_ 1 da” H= z 2c2 0
Py = enw/ du’ _e(p,up +m-c ) (IS >

The equation for e implies again that H = 0. Hence, we conclude that reparametriza-
tion invariance implies that on-shell: H = 0 and p,p" + m2c® = 0 appears as a
constraint. On the other hand, since the action is now quadratic, in principle we can

perform the path integral and after considering e it must be of the form

o

o (ug)=wy
Dx“(u)/@e(u) endlwel, (181)
zH (uy)=zf

However, we do not know clearly what it stands for and how to deal with the redun-
dancies introduced by e. We will return to this point later.

We have discussed in detail, for a relativistic free particle, how the Lagrangian
is enters in a natural way to incorporate special relativity. Moreover, with the La-
grangian one can easily study different theories like non-relativistic partides, relativis-
tic p-dimensional membranes (p = 0 is a particle, p = 1 is a string, etc...) and fields.

The main goal of the next section is to discuss the path integral for fields but
before we end with a discussion of the ground state of a non-relativistic particle. Let
us assume that for a Hamiltonian of the form

!
H=_—p 7 182
5P +V(2), (182)
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There is also the basis H|n) = E,|n) with S, Iny(n| = 1and (n'|n) = d,p,. Then

(2"|U (tg, t1)]2") Ze A Y (2, (183)

with At = to — t1. The wave function 9, () = (z|n) is a solution of the time-
independent Schréndiger equation and we assume that E,, > Eo forn > 0.

Now let us consider the complex time
z =T+ it, (184)
and
Wit a0) = TR @@, )

with 21, 2o fixed. Let us further consider a contour 7 defined in the complex time
plane with end points at z; and 23 and

T+ 11 <7<
= . I
{Tz-i-it h<t<t (186)
This is depicted in ﬁgure Then, we see that
4
t2 1L it ‘_12- —_— =
|
|
|
|
|
|
[T -4 e
| |
Figure I: Contour .
W(zo,2";21,2") = E e_%ATe_i%At¢n(a:")z/J;(x/). (187)

n=0

The sum now is regulated for A7 > 0. Moreover for large values of A7 we find that
the only relevant term in the sum is EgA7. Hence, for A7 > 0 we find

W (22, 2" 21, 2') o™ 1 ATe i My (2 ) (o). (188)

The introduction of complex time serves as a regulator and also allow us to extract

the ground state 1o (z").
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Now consider the complex—time evolution operator

U(zy,21) = e n(2=20H (189)
Fora path integral representation of the matrix elements
W (z2,2";21,2") = <:1U"\Z](Zg, z1)|z’), (190)

we need to consider the following Euclidean action

Selul, = [ 4 (2 (&Y V(x)> , (oom

where now x(21) = ', x(22) = 2" and in general x is complex. Notice that the
contour 7 has nothing to do with the classical and virtual paths and in general the
Euclidean action is complex. Then, we consider
x(z2)=a"
W (z2,2";21,2") = / Dx(z) e 1 Selly (192)
x(z1)=a'
In order to extract the ground state, we see that only x(22) = 2" corresponds to a
physical requirement and we should think x(z1) = 2’ as the condition that will lead
us to the ground state. Stating differently, we need to find the initial condition that

reproduces the ground state. Thus, x(21) = ' is not a physical condition but rather
a mathematical one. We can see this from

_Eg _iEo
W (2o, 2" z1,2") = = 7 AT 0 Aty ()i (2!), AT > 0. (193)
The contribution of 2’ enters from 1) (2’) and since want to extract ¢ (z"), it has
no physical relevance.

Hence, we write

X(z2)=2
Wz, x;21) = / Dx(z) e~ 1 S5ldly (194)
x(z1)

Notice that the only way to incorporate A7 >> 0 in the path integral is via the con-
tour 7. Therefore we finally consider the prescription

x(22)=2

1
Yolx) = / Dx(2) e_hSE[X”v\AT>>0, <I95>

x(21)
Let us test the above for the harmonic oscillator. We now that 1g(z) ~ e3¢
In spite that we can actuaﬂy compute the full path integral, we will assume the limit
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1/m — 0. The reason behind this limit comes from the fact that the action can be

2
Sell, = 5, [ ((i;‘) +w2X2> = o Isbdl,, (199

with ¢ = 1/m. Then,

written as

1 1

- =7 197
» SelXl, Sgh eXl, (197)
and thus we can interchange the semiclassical limit & — 0 with the g — 0 limic.
This implies that only need to compute the action on-shell. The classical equations

of motion are )
d“x 2

and thus we obtain

1 dx\ |
S = — - . 199
E[X”’Y on—shell 2g (X dZ) 2 ( >
Now we turn to the difficule part. The general solution of the equations is
X(2) = Ape® + A_e %, (200)
and therefore
w 2z
S - AQ 2wz AQ —2wz\ |?2
E[X”’y on—shell 2g ( +© ¢ )‘Zl ’
w
= %(XQ(Zz)2 —X*(21)),
mw
= 7( 2 —XQ(Zl))- (ZOD
Along the contour we see that the solution is of the form
B ApeT+ A _e™7 T ST T
X(Z) - {A+engeiwt 4 A_e*wﬁe*iwt tl S t S t2 ' (202>
where for convenience we have set t; = 0. We must have
x(z1) = Aye+A e,
T = Ape¥Tet 4 A emwm2em Wiz, (203)

and (19 —71) — 00. Let us fix 75 and consider 71 — —o0. For a finite value of x(21)
we must set A_ = 0 such that x(21) = 0. We also obtain x = A, e“™e™?2 which
imply that Ay = e~ Hence, the find a complex solution that gives

mw o

Selxll, = (204)

on—shell 2

This means that ¥y(x) e~ 21", This example was enlightening. The domain of
applicability of the prescription is quantum strong coupling systems or semiclassical
ground state wavefunctions. In quantum cosmology, the Hartley-Hawking state a k.a
the wavefunction of the universe, is calculated in this way.
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