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1 Classical Newtonian dynamics

Assume that the dynamics of a particle, with massm, moving a long a line and subject
to a force F (x), is govern by the equation

mẍ(t) = F (x(t)). (1)

The physical dimensions are [m] = M , [x] = L, [t] = T and thus the force must
have dimensions of [F ] = ML/T 2. This immediately imply that are characteris-
tics physical scales. For example consider F = αx. Then the constant α must have
dimensions [α] = M/T 2.

Now, let us multiply the equation by ẋ to obtain d
dt(mẋ

2/2) = ẋF (x). We see
that for ẋ = const. we must have F = 0. Moreover, if the force can be defined as

F (x) = −dV (x)

dx
, (2)

where V (x) is the potential, we will obtain

d

dt

(m
2
ẋ2 + V (x)

)
= 0. (3)

Hence, the quantity
E ≡ m

2
ẋ2 + V (x), (4)

is a constant of motion. It has dimensions of [E] = ML2/T 2 as well as the potential.
Hence, the equation mẍ = −V ′ has a constant of motion E = m

2 ẋ
2 + V (x). On

the other hand, the equation is usually interpreted as a initial value problem and thus
for an initial time t1 we specify x1 = x(t1) and ẋ1 = ẋ(t1). This in turn sets the
value of E toE1 = m

2 ẋ
2
1 + V (x1).

We can interpret these results in a different perspective by considering equation
(4) as the starting point. We specify x1 = x(t1) and ẋ1 = ẋ(t1) and therefore we
obtain

m

2
ẋ2

1 + V (x1) =
m

2
ẋ2 + V (x), (5)
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where for the right hand side t 6= t1. Taking a temporal derivative we get

0 = ẋ(mẍ+ V ′). (6)

Thus, either ẋ = 0 or mẍ + V ′ for all t 6= t0. If we consider ẋ = 0 we will have
0 = dV

dt and thus the potential is a constant and thus there is no force. Then, for a no
trivial dynamics we consider mẍ + V ′ = 0 for all t 6= t0. Notice that in some sense
we have “derived” the equation.

This interpretation is exciting. To make more sense to it, first we consider an
auxiliary variable p defined as

p = mẋ. (7)

Then, we will have
E =

1

2m
p2 + V (x), (8)

and now the initial data is x1 and p1. Following the previously discussed logic, we will
obtain the expression 0 = pṗ

m + V ′ẋ and naively re-write it as 0 = p
m(ṗ + V ′) and

obtain ṗ = −V ′. This is the equation for p but we do not derive the equation for x,
i.e. p = mẋ. This is only a problem if we want to interpret p and x as independent
variables. Notice that

0 =
pṗ

m
+V ′ẋ =

pṗ

m
+V ′

(
ẋ− p

m

)
+V ′

p

m
=

p

m
(ṗ+V ′) +V ′

(
ẋ− p

m

)
. (9)

By demanding that p
m 6= 0 and V ′ 6= 0 we obtain

ṗ = −V ′, ẋ =
p

m
. (10)

Hence, we can interpret p and x as independent variables. In order translate this de-
mand in a manifest way let us define the function H(x, p) subject to H(x, p) = E.
This function has the form

H =
1

2m
p2 + V (x), (11)

and therefore

∂H

∂p
=

p

m
,

∂H

∂x
= V ′,

∂2H

∂x∂p
=

∂2H

∂p∂x
= 0. (12)

Then, equation (9) gives

0 =
∂H

∂p

(
ṗ+

∂H

∂x

)
+
∂H

∂x

(
ẋ− ∂H

∂p

)
=

dH

dt
. (13)

Recall that due to the form of H , it is an implicit function of time. If ∂H
∂p 6= 0 and

∂H
∂x for all t 6= t1, we obtain

ṗ = −∂H
∂x

, ẋ =
∂H

∂p
, (14)
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with x1 and p1 given. This is a completely different way of thinking because we can
define H without considering the equation for x and p. The equations are obtained
by demanding H(x, p) = E. In order to specify E, x1 and p1 must be given. If
we define the condition H(x, p) = E as an on-shell condition, then H is defined
off-shell. For example, we can have the off-shell quantity

dH

dt
=
∂H

∂x
ẋ+

∂H

∂p
ṗ, (15)

which on shell gives
dH

dt

∣∣∣∣
on−shell

= 0. (16)

The obvious question is how to give, off-shell, the actual form of H? We know
at least that it must contain a term proportional to p2.

Let us use the knowledge of the Newton equation for the harmonic oscillator.
Then, we know that

H(x, p) =
1

2m
p2 +

1

2
mω2x2. (17)

We then can interpret the system in a geometrical way. Consider R3 and the coordi-
natesX,Y, Z . By setting

X = x, Y = p, Z = H(x, p), (18)

We obtain an elliptic paraboloid R3 for Z > 0. When we go on-shell, i.e. Z = E,
we obtain a curve perpendicular to this axis. This curve can be projected to the x-p
plane and notice that the curve is parametrized by t. Now, in order to get a specific
projected curve we must selectE1 which correspond to set x1 and p1.

So we learn that in general, the solutions to the equations corresponds to a curve
in the x-p plane. This space is the domain of the function H(x, p). Now, consider
another functionA(x, p). Then,

d

dt
A(x, p) =

∂A

∂x
ẋ+

∂A

∂p
ṗ. (19)

On-shell we obtain
d

dt
A(x, p) =

∂A

∂x

∂H

∂p
− ∂A

∂p

∂H

∂x
. (20)

This motivates the definition of the following quantity

1

λ
{A(x, p), B(x, p)} ≡ ∂A

∂x

∂B

∂p
− ∂A

∂p

∂B

∂x
. (21)

The bracket {·, ·} is defined off-shell and we have introduced λ for dimensional rea-
sons. Notice that [λ] = [xp]. Consider

1

λ
{p,H(x, p)} = −∂H

∂x
,

1

λ
{x,H(x, p)} =

∂H

∂p
. (22)

3



On-shell we find

ṗ =
1

λ
{p,H(x, p)}, ẋ =

1

λ
{x,H(x, p)}. (23)

We stress the difference between on-shell and off-shell. Suppose that we have a func-
tionO(x, p, t). Then, off-shell we have

dO
dt

=
∂O
∂t

+
∂O
∂x

ẋ+
∂O
∂p

ṗ, (24)

and on-shell
dO
dt

=
∂O
∂t

+
1

λ
{O, H}. (25)

Equivalently, we can start off-shell with

1

λ
{O, H} =

∂O
∂x

∂H

∂p
− ∂O
∂p

∂H

∂x
. (26)

On-shell we find

1

λ
{O, H} =

∂O
∂x

ẋ+
∂O
∂p

ṗ =
dO
dt
− ∂O

∂t
. (27)

On the other hand, consider the fundamental expression

{x, p} = λ. (28)

What is the physical meaning of λ? The constant is only relevant if we consider
the bracket. Otherwise is not fundamental since it does not appear directly in the
equations of motion. But if we consider it to be meaningful, we will have

[λ] = (ML)
L

T
, (29)

and therefore

[x] =

√
T

M
[λ], [p] =

√
M

T
[λ], [H] =

[λ]

T
. (30)

Now if we work in a system in which the velocity is dimensionless, i.e. L = T , and
the mass is measured in terms of inverse length, i.e. M = 1/L, we obtain

[x] = L, [p] =
1

L
, [H] =

1

L
, (31)

and λ is dimensionless so we can set λ = 1. At this stage this seems completely non-
sense, later we will see that it is completely reasonable and that the bracket due indeed
has a fundamental role.
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Now we are in position to generalize the system and called the objects by their
names. Suppose that we now haveN particles over the line. Then, instead of consider
ax-pplane, we haveR2N space, this is called phase-space. The p’s are the momenta for
each particle. A point in phase-space is given by (x,p) = (x1, . . . , xN , p1, . . . , pN ).
Therefore, the Hamiltonian function is written asH = H(x,p), the Poisson bracket
as

1

λ
{A(x,p), B(x,p)} ≡

N∑
i

(
∂A

∂xi
∂B

∂pi
− ∂A

∂pi

∂B

∂xi

)
,

= ∇xA · ∇pB −∇pA · ∇xB. (32)

and
{xi, xj} = 0, {pi, pj} = 0, {xi, pi} = λδij . (33)

Again, the equations of motion are obtained from the on-shell conditionH(x,p) =
E whereE is the energy of the system. Recall thatH can be seen as a 2N -dimensional
surface in an extended phase space R2N+1, as discussed for the harmonic oscillator.
On shell we obtain a (2N−1)-dimensional surface and its projection to to phase space
is denoted as Ω. Per each E there is a hypersurface ΩE . Initial conditions will select
one among all of them and the solution (x(t),p(t)) corresponds to a curve defined
on ΩE . Notice that only for N = 1, ΩE correspond to curve and if the particles
move in Rn we consider 2nN instead of 2N . The equations of motion are

ṗi = −∂H
∂xi

, ẋi =
∂H

∂pi
. (34)

which can be written as

ṗ = −∇xH, ẋ = ∇pH. (35)

With this notation, the off-shell quantity dH/dt can be written as

dH

dt
= ∇xH · ẋ +∇pH · ṗ. (36)

Now let us consider how the hamiltonian H changes under perturbations. Let
H ′ be the hamiltonian of the perturbed system and H the hamiltonian of the un-
perturbed system. For the later, we assume that we have a solution of ṗ = −∇xH ,
ẋ = ∇pH with (x(t = t1),p(t = t1)) given. The (2N − 1)-dimensional surface
ΩE1 is defined and we know the curve on ΩE1 . For the moment, let us think H ′ as
a completely independent system with repspect toH and the position and momenta
are label by x′ and p′. The on-shell condition H ′ = E′ will give ṗ′ = −∇x′H

′,
ẋ′ = ∇p′H

′ and ΩE′ . In order to relate both systems, we see thatE′ must be of the
formE′ ≈ E+ εwhere the energy ε is considered to be small. Then, the ΩE′ hyper-
surface corresponds to the ΩE hypersurface with small perturbations. Then, we can
consider x′ = x+ δx and p′ = p+ δp where the functions δx and δp are small and
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parametrize these perturbations. To clarify we can denote them as δx = ε1~η(x) and
δp = ε2~ζ(p) where ε1 and ε2 are small parameters that control the perturbation.

We can use these linear splittings ff-shell to obtain

H ′(x′,p′) ≈ H ′(x′,p′)
∣∣
x′=x,p′=p

+∇x′H
′∣∣
x′=x,p′=p

·δx+∇p′H
′∣∣
x′=x,p′=p

·δp.
(37)

In order to recover the on-shell conditionE′ ≈ E + ε, then we must have that

H ′(x′,p′)
∣∣
x′=x,p′=p

= H(x,p), (38)

and thus
H ′(x′,p′) ≈ H(x,p) +∇xH · δx +∇pH · δp. (39)

To justify the above expression notice, for example, that ∂H′
∂x′i

= ∂xj

∂x′i
∂H′

∂xj
and ∂x′i

∂xj
=

δij + ε1
∂ηi

∂xj
. Then, ∂H′

∂x′i
=
(
δji +O(ε1)

)
∂
∂xj

(H +O(ε1)) = ∂H
∂xi

+O(ε1).
Therefore, on-shell we obtain

E′ ≈ E − ṗ · δx + ẋ · δp. (40)

It remains to contemplate the initial conditions. Since we know them for the unper-
turbed system we need to specify them for t = t1. Notice that the case in which the
perturbation are zero, basically we have that the perturbations modify the curve but
not the hypersurface. Therefore, the displacements δx and δp play no physical roll
and thus they can be interpreted as virtual. They generate virtual curves. In order to
justify this interpretation and provide an example of their usefulness, consider the
off-shell quantity p′ẋ′ −H ′(x′,p′). We find that

p′·ẋ′−H ′(x′,p′) ≈ p·ẋ−H(x,p)+p· d
dt
δx+δp·ẋ−∇xH ·δx−∇pH ·δp. (41)

Notice that the above can be written as

p′·ẋ′−H ′(x′,p′) ≈ p·ẋ−H(x,p)+
d

dt
(p·δx)+(ṗ +∇xH)·δx−(ẋ−∇pH)·δp.

(42)
Due to the time derivative, let us consider the integral of that expression

t2∫
t1

dt (p′ · ẋ′ −H ′) ≈
t2∫
t1

dt (p · ẋ−H) + (p · δx)|t2t1

+

t2∫
t1

dt [(ṗ +∇xH) · δx− (ẋ−∇pH) · δp] .(43)

Provided that δx vanishes at t1 and t2, the quantity
t2∫
t1

dt (p · ẋ − H) remains the

same on-shell. This is pleasing but conflicting at the same time. We have argued that
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δx and δp must vanish at t1. This is equivalent to say that the equations are subject
to initial conditions. But here, the equations have the “boundary” condition, i.e. x is
given at t1 and t2 which are boundary points of the time interval. The specification
of p at t1 is translated to the specification of x at t2. Can we solve the equations of
motion with the “boundary” condition consistently? To illustrate that this is indeed
possible, consider the N = 1 case with ṗ = F (x) and p = mẋ. Consider the time
derivative of the equations and plug the equations into these expressions. We obtain

p̈ =
F ′

m
p, F = mẍ. (44)

Now we solve the equation of x, the equation that we start with! The particular so-
lution is of the form x(t) = c1x1(t) + c2x2(t). Since we know x(t1) and x(t2), we
have a system (

x(t1)
x(t2)

)
=

(
x1(t1) x2(t1)
x1(t2) x2(t2)

)(
c1

c2

)
. (45)

If the matrix is invertible, i.e. x1(t1)x2(t2) − x2(t1)x1(t2) 6= 0, we can solve the
problem and use p = mẋ to give the expression for the momentum. For general case
N the problem is solved provided that the corresponding matrix is invertible. Notice
thatE1 is specified now after computing the form of p and evaluating it at t1. Now,
the fundamental point is to interpret the expression given in equation (43) to derive
the equations of motion in another way. We define the action S[x,p] as

S[x,p] =

t2∫
t1

dt (p · ẋ−H(x,p)). (46)

The action is consider to be a functional and thus we make contact with the calculus
of variations. Then, the virtual displacements corresponds to variations. Hence,

δS = S[x + δx,p + δp]− S[x,p]

= (p · δx)|t2t1 +

t2∫
t1

dt [(ṗ +∇xH) · δx− (ẋ−∇pH) · δp] . (47)

Provided that δx(t1) = 0 = δx(t2), by demanding δS = 0 we obtain ṗ = −∇xH
and ẋ = ∇pH . This is known as Hamilton’s principle. In words, the extremum
of the action gives the equations of motion. Notice that we do not know if the ex-
tremum corresponds to a minimum or a maximum. In geometrical terms, among all
the possible curves on ΩE1 with x(t1) and x(t2) fixed, the curve that gives the solu-
tion is the one that extremize the action. The rest of curves then are virtual and thus
unphysical.

We stress that we deal with a “boundary” problem for x rather than an initial
value problem for x,p. There are no conditions on the momenta at any time.

7



Notice that with the Hamiltonian and the action, we have an off-shell language
to define the theory. The action by itself, seems just a gadget like the Poisson bracket.
In the following we will show that these objects lead us to a framework where we can
discuss isometries (symmetries of phase space) and physical conserved quantities.

In order to do so let us study transformations of the form X = X(x,p, t) and
P = P(x,p, t). If we demand that the transformations satisfy

{Xi, Xj} = 0, {Pi, Pj} = 0, {Xi, Pj} = λδij . (48)

Then, for the functionsA(X,P) andB(X,P) we find off-shell

{A,B}x,p =
∑
i,i′

∂A

∂Xi

∂B

∂Xi′
{Xi, Xi′}+

∑
j,j′

∂A

∂Pj

∂B

∂Pj′
{Pi, Pj′}

+
∑
i,j

{Xi, Pj}
(
∂A

∂Xi

∂B

Pj
− ∂A

∂Pj

∂B

∂Xi

)
,

= {A,B}X,B (49)

We see that the transformation preserves or leave invariant (off-shell) the Poisson
bracket. These transformations are refer as to canonical transformations. Now con-
sider χA = (Xi, Pj), ξa = (xl, pk). Then, equation (48) we can write {χA, χB} =

λεAB where εii′ = 0, εij′ = δij′ , ε
ji′ = −δi′j and εjj′ = 0. Similarly we also consider

εab to obtain
{χA, χB} = λ

∑
a,b

εab
∂χA

∂ξa
∂χB

∂ξb
. (50)

If we considerN particles moving in Rn, all indices run from 1 tonN . Then, we have

1

(nN)!

∑
A,B

εAB{χA, χB} = λ
1

(nN)!

∑
A,B

∑
a,b

εABε
ab∂χ

A

∂ξa
∂χB

∂ξb
= λ det J, (51)

where J is the Jacobian matrix. This imply that det J = 1
(nN)!

∑
A,B εABε

AB = 1

and thus we conclude that transformation is invertible.

Consider the case on which X = X(x,p) and P = P(x,p), refer as to re-
stricted canonical transformation. The trivial example of such transformation is the
identity transformation Xi =

∑
l′ δ

i
l′x

l′ , Pj =
∑

k δ
k
j pk . A no trivial transforma-

tion corresponds to global translations in phase space, i.e. Xi =
∑

l′ δ
i
l′(x

l′ + al
′
),

Pj =
∑

k δ
k
j (pk + bk), where al′ , bk are constants. Now consider

Xi =
∑
l′

Ril′x
l′ , Pj =

∑
k

R̄kj pk. (52)

In order to be a restricted canonical transformation we must have∑
l,l′

Ril′δ
l′
l R̄

l
j = δij . (53)
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In matrix notation we get RIR̄ = I. Then, det J = detR det R̄ = 1. If we restrict
ourselves to R̄ = RT we find that the transformations correspond to spatial rotations
in phase space.

This opens the beautiful door of using symmetries as guidance principle. For
example consider the hamiltonian for free particles and with any loss of generality
we set their masses set to unity. Then,

H(x,p) =
∑
k,k′

1

2
δkk
′
pkpk′ . (54)

The equations of motion are

dxl

dt
=
∑
k

δlkpk,
dpk
dt

= 0. (55)

It is straightforward to check that the Hamiltonian and the equations of motion are
invariant under global spatial translations Xi =

∑
l′ δ

i
l′(x

l′ + al
′
), Pj =

∑
k δ

k
j pk .

The equations for the momenta tells us that
∑

k pk is a constant of motion, i.e. the
total momenta is conserved. An equivalent statement of this is that

∑
k pka

k is con-
served. Hence, we see that invariance of the hamiltonian, realized off-shell, gives a
conserved quantity after going on-shell. On the other hand, since

∑
ij δ

ijPjẊ
i is

invariant we see that the action is also invariant off-shell.

Now consider the rescaling transformation

Xi = α
∑
l′

δil′x
l′ , Pj = α

∑
k

δkj pk, (56)

whereα 6= 1. The Hamiltonian and the action are not invariant but the equations of
motion are invariant. This is not a surprise since the transformation is not a canonical
transformation (unless α = 1) but it shows us that invariance of the equations of
motion not necessarily implies invariance of the off-shell quantities. If the action and
Hamiltonian are indeed invariant, then it is insured that the equations of motion are
invariant.

The action shows us how to find the conserved quantity. First we use the action
with arbitrary variations and the respective boundary condition to derive the equa-
tions. Then we consider the promotion of the al′ to be functions of time. Since
Xi =

∑
l′ δ

i
l′(x

l′ + al
′
), the variation is taken to be δxl = al with al small. The

variations for the momenta are zero. For this particular variations and Hamiltonian
we obtain

δS = S[X = x + δx,P = p + δp]− S[x,p] =

t2∫
t1

dtp · ȧ. (57)
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We can write the expression as

δS = p · a|t2t1 +

t2∫
t1

dt ṗ · a. (58)

If we now consider the equations of motion we obtain

δS|on−shell = p · a|t2t1 . (59)

We see that p · a =
∑

k pka
k must be conserved.

Let us now consider spatial rotations Xi =
∑

l′ R
i
l′x

l′ , Pj =
∑

k(R
T )kj pk .

We writeR = eω where ω is another matrix. The action and the hamiltonian are in-
variant. Since detR = 1 we use detR = eTr ln exp(ω) to conclude that Trω = 0 and
ωT = −ω. Let the coefficient of the traceless matrix be small and time dependent.
Then, we haveR ≈ I + ω. The variations are now taken to be δxl =

∑
l′ ω

l
l′x

l′ and
δpk =

∑
k′(ω

T )k
′
k pk′ . We find

δS|on−shell =
∑
l,k

pkω
k
l x

l

∣∣∣∣∣∣
t2

t1

, (60)

And thus
∑

l,k pkω
k
l x

l must be conserved. Notice that the quantity can be written as∑
l,k ωklx

lpk and since ωT = −ω, we need to antisymmetrized the product xlpk to
obtain a non-zero result. Then∑

l,k

ωklx
lpk =

1

2

∑
l,k

ωkl(x
lpk − xkpl). (61)

Hence we conclude, that
Llk = xlpk − xkpl, (62)

must be conserved. We can corroborate by computing L̇lk . This is the conservation
of angular momentum.

The variations consider so far can be written as

δxl =
1

λ
{xl,

∑
k

pka
k}, δxl =

1

λ
{xl, 1

2

∑
l′,k

ωkl′L
l′k}. (63)

Thus, we see that the momenta and angular momenta are the generators of infinites-
imal spatial translations and rotations respectively.

We know, by construction, that the energy is a conserved quantity. How do we see
it from the action point of view? Notice that space transformations are embedded in
the formalism in a natural way but time does not. This should be clear that the action
is an integral over time.
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Let us considerXi(t′) where t′ = t+ f(t). Let f(t) be small and thus

Xi(t′) ≈ Xi(t) +
dXi

dt′

∣∣∣∣
t′=t

f(t). (64)

If Xi is related to a canonical transformation (not restricted) of xl then we identify
Xi(t) =

∑
l δ
i
lx
l(t). Then,

Xi(t′) ≈
∑
l

δil(x
l(t) + ẋlf(t)). (65)

The variation of the transformation is δxl = ẋlf(t) and for the momenta is defined
analogously as δpk = ṗkg(t). On-shell, they can be written as

δxl = {xl, f(t)H}, δpk = {pk, g(t)H}. (66)

Hence, the Hamiltonian is the generator of time translations. For the action, we con-
sider the variations δxl = ẋlf(t) and δpk = ṗkg(t) to obtain

δS|on−shell = p · ẋf(t)|t2t1 = p · pf(t)|t2t1 = 2Ef(t)|t2t1 . (67)

We have seen have transformations that leave invariant the action and that also
are canonical transformations are related to conserved quantities. The language of
these invariances is off-shell but the conserved quantities we need to use the equa-
tions of motion. We see that symmetries of the action and hamiltonian are powerful
and thus may serve to construct theories. Of course, one has to first postulate the
symmetry and through experiment (i.e. solutions of the equations of motion) check
if they are physical. For example, we can study potentials V that are invariant under
spatial translations and rotations.

We discussed three types of transformations that indeed are realized in nature
that also are canonical transformations. This is not a rule. The fundamental quanti-
ties are the action and the hamiltonian. Therefore, we can have symmetries that are
not related to canonical transformations at all. On the other hand, not every sym-
metry of the hamiltonian is symmetry of the action and not every symmetry of the
action leads to a conserved quantity. For the former consider the hamiltonian of the
free particles with the transformation p→ −p with x unchanged. For the later con-
sider p→ −p and x→ −x . The problem with this case is that we cannot write an
infinitesimal version of it, i.e. the identity transformations plus the variation.

There is another quantity that it will be fundamental for quantum mechanics.
Let us define the function

S(x, t) ≡
t∫

t1

dt′
(
p · dx

dt′
−H(x,p)

)
. (68)
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By definition we must have S(x(t1), t1) = 0 and S(x, t) is known as Hamilton’s
principal function. From

Ṡ = p · ẋ−H(x,p) = ∇xS · ẋ +
∂S
∂t
. (69)

Provided that
∇xS = p, (70)

we find
− ∂S
∂t

= H (x,∇xS) . (71)

The above is known as the Hamilton-Jacobi equation and suggest that S should be
of the form

S(x, t) = W (x)−W (x(t1))− C(t− t1), (72)

whereC is a constant and now∇xW = p. Then, we obtain

H (x,∇xW ) = C. (73)

On-shell we find thatC = E. Let us consider the Hamiltonian for the free particles
. Then,

1

2
∇xW · ∇xW = E, S(x, t) = W (x)−W (x(t1))− E(t− t1). (74)

The solution of the remaining equation isW (x) = ±p · x. Thus,

S(x, t) = ±p · (x− x(t1))− E(t− t1). (75)

The function S(x, t) computes the on-shell action without using the equations of
motions for x and p after setting t = t2.The equation that we solve is an equation
for the function W (x). Let us see this more clearly for the harmonic oscillator. We
have

H(x, p) =
1

2m
p2 +

1

2
mω2x2. (76)

The equations of motion are

p = mẋ, ṗ = −mω2x. (77)

Taking a derivative of the equations and using them we find

ẍ+ ω2x = 0, p̈+ ω2p = 0. (78)

Then, we solve for x with x(t1) and x(t2) given. Using p = mẋ we obtain the solu-
tion for the momentum. In general we can write the solutions as

x(t) = c1 cos(ωt) + c2 sin(ωt), p = −mωc1 sin(ωt) +mωc2 cos(ωt), (79)

12



where A and B are functions of x(t1) and x(t2). Then, E = 1
2mω

2(c2
1 + c2

2). The
on-shell action gives

S|on−shell = mω

t2∫
t1

dt[(c2
2−c2

1) cos(ωt) sin(ωt)+c2c1(2 cos2(ωt)−1)]−E(t2−t1).

(80)
It remains to solve the integrals and then write the answer in terms of x(t1) andx(t2).
Using S(x, t) we just need to solve

W (x) = ±
√

2mE

x∫
x(t1)

dx′
√

1− mω2

2E
x′2. (81)

For this case the integral can be performed. Hence, we see that the function S(x, t)
it is useful for computing the equations of motion provided that W (x) can be com-
puted.

On the conceptual point of view, off-shellS(x, t) corresponds to the action with
the end point free. Moreover, it also indicates that the momentum is not an indepen-
dent variable as the in the case of the Hamiltonian. On the other hand, let us consider
a free particle with massmmoving in R3. We have

S(x, t) = ±p · (x− x(t1))− E(t− t1). (82)

Let us now consider the dimensionfull constant λ and consider the dimensionless
quantity

S̄(x, t) =
1

λ
S(x, t). (83)

Then we can write

S̄(x, t) = ±k · (x− x(t1))− ω(t− t1), (84)

with
p = λk, E = λω, (85)

where [k] = 1/L and [ω] = 1/T . Since we now that E = 1
2mp2 then ω = λ

2mk2.
Therefore,

S̄(x, t) = ±k · (x− x(t1))− ω(k)(t− t1). (86)

We can relate, mathematically, S̄(x, t) to a wavepacket

Ψ(x, t) =

∫
dkA(k) eiS̄(x,t). (87)

In order to reproduce ω = λ
2mk2, the wavepacket must satisfy

iλ
∂

∂t
Ψ = − λ2

2m
∇2

xΨ. (88)
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This is the birth of quantum mechanics as a matter-wave theory. We see how λ plays
a fundamental role, it corresponds to ~. Following Dirac, the canonical quantization
procedure is to consider xl, pk as operators x̂i, p̂k that satisfy

1

i~
[x̂l, p̂k] = δlk1̂,

1

i~
[x̂l, x̂l

′
] = 0,

1

i~
[p̂k, p̂k′ ] = 0, (89)

where [x̂l, p̂k] = x̂lp̂k − p̂kx̂l. We have the replacement

1

λ
{·, ·} → 1

i~
[·, ·]. (90)

With this rule we, in the Schrödinger picture, we consider Ψ to be an eigenfunction
of the position operator x̂ and p̂ = −i~∇x. Then, we quantize the Hamiltonian.
Notice that the later can achieved without ambiguities for Hamiltonians that not
include terms such asx ·p. After taking the above rules and considerations, we finally
write the Schrödinger equation

i~
∂

∂t
Ψ = ĤΨ, Ĥ = H(x̂, p̂). (91)

In order to solve this equation, let us consider Ψ(x, t) = ψE(x)e−i
E
~ (t−t1). Then,

we obtain the time-independent Schrödinger equation

ĤψE(x) = EψE(x). (92)

Notice then thatψE(x) is a eigenfunction of the position operator and the quantized
Hamiltonian. Moreover, the Hamiltonian must satisfy Ĥ† = Ĥ in order to obtain
real energies E. The key point is that once, we solve the above equation we will find
that the energy is quantized, i.e. E → En. Then the full solution is of the form

Ψ(x, t) =
∑
n

ψEn(x)e−i
En
~ (t−t1). (93)

This gives a superposition of solutions with energyEn. Together with the Born rule,
we find that quantum mechanics is radically different from classical mechanics. For
the rules that are not going to be discussed, we refer to the reader to any serious text-
book in quantum mechanics. Here, we only emphasize that equation (92) is the quan-
tum analog of the on-shell condition for the classical Hamiltonian.

We see how the Hamiltonian,λ and the Poisson brackets play a fundamental role
as advertised. What about the action? In some sense we already took into account
the action by writing the wavepacket. But in the following section will show that it
drives another quantization method, the path integral approach. For the moment
notice that the action is compatible with the uncertainty principle. The boundary
conditions are set on the initial and final positions and there is no condition on the
momenta.
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We end this discussion by considering the wavefunction of the form

Ψ(x, t) = e
i
~S(x,t). (94)

The Schrödinger equation for the free particle becomes

i~
∂

∂t
Ψ(x, t) =

1

2m
p̂2Ψ(x, t). (95)

Notice that
p̂Ψ(x, t) = (∇xS)Ψ(x, t). (96)

Then, we have
− ∂

∂t
S = − i~

2m
∇2

xS +
1

2m
(∇xS)2. (97)

In the limit ~→ 0 we find

lim
~→0

S = S, lim
~→0
∇xS = p. (98)

Hence, the semiclassical behavior of the wavefunction is of the form

lim
~→0

Ψ(x, t) = e
i
~S(x,t). (99)

2 Path integral in quantummechanics

We now that a classical theory can be defined off-shell from the action

S[x,p] =

t2∫
t1

dt (p · ẋ−H(x,p)). (100)

The equations of motion follow from Hamilton’s principle δS = 0. The equations
for the position are subject to boundary conditions and the momenta have no condi-
tions. The solution corresponds to a curve over the hyspersurface at constant energy
ΩE . In general, there will be infinitely many virtual curves forx(t1) andx(t2). Classi-
cally they have no meaning except only the one that corresponds to the solution. Time
corresponds to the parameter of the curves. Let us consider the curves projected to
the position space and we will referred to them as paths. Thus, there are infinitely
many virtual paths for x(t1) and x(t2) and the classical path satisfy the equations of
motion for x. Of course there are infinitely many virtual paths in momentum space
but their endpoints are deduced not given.

In the las section we saw that the semiclassical behavior of the wavefunction is of
the form e

i
~S , where S corresponds to the action with the end point not specified.

Now let us consider
e
i
~S[x,p]. (101)
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Since the action is a function over all possible paths, then also e
i
~S[x,p]. Consider now

the sum over all possible paths weighted by the factor e
i
~S[x,p], i.e.∑

paths in position space
withx(t1) and x(t2) given

∑
paths in momentum space

e
i
~S[x,p]. (102)

Let us assume that the above quantity exists. At this point, we can only interpret
that this quantity is related to the time evolution of the system and thus it has to
be directly related to quantized Hamiltonian. This seems to be naive but notice that
among all the paths there is a the classical path, the one that corresponds to a solution
of the classical equations of motion, and we know that the classical Hamiltonian is
the generator of time evolution.

With the goal of interpreting sum over all paths, let us consider a particle moving
in R. Then, we have the position operator x̂ and the continuous basis |x〉 with

x̂|x〉 = x|x〉, 1

`

∞∫
−∞

dx |x〉〈x| = 1̂, 〈x′|x〉 = `δ(x′ − x), (103)

where ` is introduced so that the vector |x〉 are dimensionless. Due to the properties
of δ, we have

`δ(x′ − x) = δ(x′/`− x/`). (104)

On the other hand we have the momentum operator p̂ and the continuous basis |p〉
with

p̂|p〉 = p|p〉, 1

κ

∞∫
−∞

dp |p〉〈p| = 1̂, 〈p′|p〉 = κδ(p′ − p), (105)

where κ is also introduced so that the vector |p〉 are dimensionless. The basis are
related by

|p〉 =
1

`

∞∫
−∞

dx |x〉〈x|p〉, |x〉 =
1

κ

∞∫
−∞

dp |p〉〈p|x〉. (106)

The quantity 〈x|p〉 corresponds to the transition function and we denoted as f(x, p)
and 〈p|x〉 = f∗(x, p). From

〈p′|p〉 =
1

`

∞∫
−∞

dx 〈p′|x〉〈x|p〉, 〈x′|x〉 =
1

κ

∞∫
−∞

dp 〈x′|p〉〈p|x〉, (107)

we find
∞∫
−∞

d(x/`) f∗(x, p′)f(x, p) = δ(p′/κ−p/κ),

∞∫
−∞

d(p/κ) f∗(x, p)f(x′, p) = δ(x′/`−x/`).

(108)
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Due to the integral representation of δ, we find that f(x, p) = 1√
2π

e+i px
κ` . Demand-

ing p̂f = pf , with p̂ = −i~∂x, we find that `κ = ~ as expected. Hence

f(x, p) =
1√
2π

e+i px~ , (109)

and

|p〉 =
1

`

∞∫
−∞

dx√
2π
|x〉e+i px~ , |x〉 = `

∞∫
−∞

dp√
2π~
|p〉e−i

px
~ . (110)

Then, a general state |ψ〉 can be expressed in term of these basis

|ψ〉 =
1

`

∞∫
−∞

dx |x〉〈x|ψ〉, |ψ〉 = `

∞∫
−∞

dp

~
|p〉〈p|ψ〉. (111)

In order to have a probabilist interpretation we demand 〈ψ|ψ〉must by finite, i.e.

1

`

∞∫
−∞

dx |〈x|ψ〉|2 <∞, `

∞∫
−∞

dp

~
|〈p|ψ〉|2 <∞. (112)

From these we see the wavefunctions f(x, p) satisfy
∞∫
−∞

dx f∗(x, p′)f(x, p) = ~δ(p′ − p),
∞∫
−∞

dp f∗(x, p)f(x′, p) = ~δ(x′ − x),

(113)
and thus, alone, they are not suitable to describe a state.

The time evolution of a state is given by the time evolution operator Û . For time-
independent Hamiltonians, as in our case, it takes the form

Û(t, t1) = e−
i
~ (t−t1)Ĥ . (114)

Let us assume that at t1 the state of the system is given by the superposition

|i, t1〉 =
1

`

∞∫
−∞

dx′ |x′〉〈x′|i, t1〉,
1

`

∞∫
−∞

dx′ |〈x′|i, t1〉|2 <∞. (115)

The state evolves to a final state at t2 as

|f, t2〉 = e−
i
~ (t2−t1)Ĥ |i, t1〉, (116)

This state also have the expression

|f, t2〉 =
1

`

∞∫
−∞

dx′′ |x′′〉〈x′′|f, t2〉,
1

`

∞∫
−∞

dx′′ |〈x′′|f, t2〉|2 <∞. (117)
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We find that

〈x′′|f, t2〉 =
1

`

∞∫
−∞

dx′ 〈x′′|Û(t2, t1)|x′〉〈x′|i, t1〉. (118)

For
Ĥ =

1

2m
p̂2 + V (x̂), (119)

we have
〈x′′|Û(t2, t1)|x′〉 = 〈x′′|e−

i
~ (t2−t1)( 1

2m
p̂2+V (x̂))|x′〉. (120)

The above can be expressed as

〈x′′|Û(t2, t1)|x′〉 = `

∞∫
−∞

dp

2π~
e
i
~ (p(x′′−x′)−H(x′,p)(t2−t1)). (121)

We see the first hint of the action after looking the argument of the exponential in
the momentum integral.

Let us focus in the free particle, we obtain

〈x′′|Û(t2, t1)|x′〉 = `

√
m

2π~i(t2 − t1)
e
i
~ (t2−t1)m

2

(
x′′−x′
t2−t1

)2

. (122)

Notice that the on-shell action for the free particle is

Sfree[x, p]|on−shell =
m

2

(x′′ − x′)2

t2 − t1
, x′′ = x(t2), x′ = x(t1). (123)

This is intriguing since we have recover a semiclassical result without taking a semi-
classical limit. Moreover, the expression suggests that the square root pre-factor must
take into account non classical behavior only.

Since no measurement has been taken into account, there is no position state
preferred at t1 and t2, i.e. we have infinitely many matrix elements 〈x′′|Û(t2, t1)|x′〉.
In the Copenhagen interpretation we consider a measurement and the initial state
“collapse” or “reduced” to a specific position. Let us assume that it reduces to |i, t1〉 →
|x1〉〈x1|i, t1〉, i.e the position at t1 is x1. Then, the final state takes the form

|f, t2〉 =
1

`

∞∫
−∞

dx′′ |x′′〉〈x′′|Û(t2, t1)|x1〉. (124)

We then only can compute the probabilities of finding the free particle at t2 between
the region x′′ and x′′ + dx′′, i.e. 1

` |〈x
′′|Û(t2, t1)|x1〉|2dx′′. Among infinitely many

positions, let us consider x′′ = x2. Thus

1

`
|〈x2|Û(t2, t1)|x1〉|2dx2 =

m

2π~(t2 − t1)
dx2, (125)
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corresponds to the probability of a free particle that was initially located at x1 at t1
will be located in a region [x2, x2+dx2] at the instant t2. This is actually a conditional
probability trivially realized. In fact, if no measurement is consider we have

P (x1 ≤ x′ ≤ x1 + dx1)dx′ =
1

`
|〈x′|i, t1〉|2dx′, (126)

P (x2 ≤ x′′ ≤ x2 + dx2)dx′′ =
1

`
|〈x′′|f, t2〉|2dx′′. (127)

These corresponds to unconditional probabilities if |f, t2〉 and |i, t1〉 are not related.
This is not true for our case since |f, t2〉 = Û(t2, t1)|i, t1〉, i.e. the probability ampli-
tudes are related by

〈x′′|f, t2〉 =
1

`

∞∫
−∞

dx′ 〈x′′|Û(t2, t1)|x′〉〈x′|i, t1〉. (128)

Without any measurement at t1 we can only have the conditional probability that
the free particle will be located in a region [x2, x2 + dx2] at the instant t2 given the
probability that it was initially located at x1 at t1. The measurement removes the un-
certainty at t1 by telling us that the probability that the particle is located at x1 is 1.
Hence, we conclude that 1

` |〈x
′′|Û(t2, t1)|x1〉|2dx′′ is in reality a conditional proba-

bility. To enforce this interpretation we see that the sum of all conditional probabil-
ities

1

`

∞∫
−∞

dx′′ |〈x′′|Û(t2, t1)|x′〉|2 = 〈x′|x′〉 = `δ(0), (129)

diverges. For the free particle we have |〈x′′|Û(t2, t1)|x′〉|2 = m
2π~(t2−t1) and thus

divergence is due to the integral for finite time interval.

From the evidence of the free particle we consider

〈x′′|Û(t2, t1)|x′〉 =
∑

paths in position space
with x(t1)=x′ and x(t2)=x′′ given

∑
paths in position space

e
i
~S[x,p]. (130)

If the above is true, we see that the right hand side corresponds to a conditional prob-
ability amplitude. From the direct result, it is reasonable to consider the splitting

x = x̄+ ~η, p = p̄+ ~ζ, (131)

where η and ζ are considered as quantum fluctuations and x̄, p̄ classical terms. The
later must be the responsible of the phase factor. With this splitting the action be-
comes

Sfree[x, p] = Sfree[x̄, p̄] + ~ (p̄η)|t2t1 + ~
t2∫
t1

dt [( ˙̄x− p̄/m)ζ − ˙̄pη] + ~2Sfree[η, ζ].

(132)
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Let x̄, p̄ satisfy classical equations of motion with x̄(t2) = x′′ and x̄(t1) = x′ and no
condition for p̄. Then, we must have η(t2) = 0 = η(t1) and no condition for ζ . The
expression reduces to

Sfree[x, p] = Sfree[x̄, p̄]|on−shell + ~2Sfree[η, ζ]. (133)

and therefore

〈x′′|Û(t2, t1)|x′〉 =

 ∑
paths in position space

with ζ(t1)=0 and ζ(t2)=0 given

∑
paths in momentum space

ei~Sfree[η,ζ]


×e

i
~ Sfree[x̄,p̄]|on−shell . (134)

Notice that Sfree[η, ζ] is purely off-shell quantity and we see that the virtual paths
contribute at the quantum level. In fact we must have∑

paths in position space
with η(t1)=0 and η(t2)=0 given

∑
paths in momentum space

ei~Sfree[η,ζ] ∝ `
√

m

2π~i(t2 − t1)
.

(135)

It remains to give a mathematical meaning to the sum over paths of the above expres-
sion. Let us divide the time interval intoN equal intervals ε. Then,

t2 − t1 = Nε, (136)

and
t2∫
t1

dt =

t1+ε∫
t1

dt +

t1+2ε∫
t1+ε

+ . . .+

t1+Nε∫
t1+(N−1)ε

dt =

N−1∑
n=0

t1+(n+1)ε∫
t1+nε

dt . (137)

Now we approximate the paths to polygonal paths. Consider the expansions

η(t) = η|t1+nε + η̇|t1+nε (t− t1 − nε) +
1

2!
η̈|t1+nε (t− t1 − nε)2 + . . . ,

ζ(t) = ζ|t1+nε + ζ̇
∣∣∣
t1+nε

(t− t1 − nε) +
1

2!
ζ̈
∣∣∣
t1+nε

(t− t1 − nε)2 + . . . ,

(138)

For t = t1 + (n+ 1)ε, ε small andN large we obtain

η̇|t1+nε ≡
∆ηn
ε

=
η|t1+(n+1)ε − η|t1+nε

ε
, (139)

and

ei~Sfree[η,ζ] =
N−1∏
n=0

e

iε
~

(
~ ζ|t1+nε

~∆ηn
ε
−

(~ ζ|t1+nε)
2

2m

)
(140)

20



The above can be written as

ei~Sfree[η,ζ] ≈
N−1∏
n=0

e
− i

2m~ ε(~ ζ|t1+nε−m
~∆ηn
ε

)2
N−1∏
n′=0

e
im
2~ ε
( ~∆ηn′

ε

)2

. (141)

The sum over all the paths in momentum space translates to the sum over the pos-
sible values of ζ|t1+nε per each polygon. This of course corresponds to a integral
over ζ|t1+nε. Since ~ ζ|t1+nε has dimensions of momentum, the integrals must be
accompanied with a factor `/~. Therefore

∑
paths in momentum space

ei~Sfree[η,ζ] ≈
N−1∏
n′=0

e
im
2~ ε
( ~∆ηn′

ε

)2

×
N−1∏
n=0

`

~

∞∫
−∞

d(~ ζ|t1+nε)e
− i

2m~ ε(~ ζ|t1+nε−m
~∆ηn
ε

)2

.

(142)

The integrals that we need to solve are

∞∫
−∞

dy eiα(y−b)2
= eisgn(α)π

4

√
π

|α|
, (143)

and thus

∑
paths in momentum space

ei~Sfree[η,ζ] ≈
N−1∏
n′=0

e
im
2~ ε
( ~∆ηn′

ε

)2

× e−iN
π
4

(
2πm`2

~ε

)N
2

.

(144)
For the remaining, we have

N−1∏
n′=0

e
im
2~ ε
( ~∆ηn′

ε

)2

= e
im
2~

(~ η|t1+ε−~ η|t1 ))
2

ε e
im
2~

(~ η|t1+2ε−~ η|t1+ε))
2

ε × · · ·

×e
im
2~

(~ η|t1+(N−1)ε−~ η|t1+(N−2)ε))
2

ε e
im
2~

(~ η|t1+Nε−~ η|t1+(N−1)ε))
2

ε .

(145)

Since η(t2) = 0 = η(t2), we obtain

N−1∏
n′=0

e
i

2m~ ε
( ~∆ηn′

ε

)2

= e
im
2~

(~ η|t1+ε)
2

ε e
im
2~

(~ η|t1+2ε−~ η|t1+ε))
2

ε × · · ·

×e
im
2~

(~ η|t1+(N−2)ε−~ η|t1+(N−1)ε))
2

ε e
im
2~

(~ η|t1+(N−1)ε)
2

ε .

(146)
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PerformingN − 1 integrals we obtain∑
paths in position space

with η(t1)=0 and η(t2)=0 given

∑
paths in momentum space

ei~Sfree[η,ζ] ≈ (2π)N
√
N`

√
m

2π~i(t2 − t1)
.

(147)

This is promising because we recover the desired facto with the drawback is that in
the limitN →∞ the constant (2π)N

√
N diverges. We formally define a measure

[δxδp] = N
N−1∏
n=0

`

~
dδp

N−1∏
n=1

1

`
dδx, (148)

whereN is an inifnite normalization constant that cancels the divergent term (2π)N
√
N .

Hence, the sum over paths then can be written as

∑
paths in position space

with η(t1)=0 and η(t2)=0 given

∑
paths in momentum space

=

δx(t2)=0∫
δx(t1)=0

∫
[δxδp]. (149)

Since for the free case, the action of the quantum fluctuations is the same as the action
of the classical solution, we see that we can undo the linear splitting to obtain

〈x′′|Û(t2, t1)|x′〉 =

x(t2)=x′′∫
x(t1)=x′

[dxdp] e
i
~S[x,p]. (150)

Instead of using the symbol [dxdp] it is usedNDx(t)Dp(t), we the final form is

〈x′′|Û(t2, t1)|x′〉 = N
x(t2)=x′′∫
x(t1)=x′

Dx(t)

∫
Dp(t) e

i
~S[x,p]. (151)

This is the path integral representation of the matrix elements 〈x′′|Û(t2, t1)|x′〉. No-
tice that the path integral by no means is a well define mathematical quantity. Nev-
ertheless gives the desire physical results. The above expression applies for classical
Hamiltonians of the form

H(x, p) =
1

2m
p2 + V (x), (152)

and the generalization to a system of N particles moving in Rn is straightforward.
Let us compute the path integral for the above Hamiltonian. We have

N
x(t2)=x′′∫
x(t1)=x′

Dx(t)

∫
Dp(t) e

i
~

t2∫
t1

dt (pẋ− 1
2m

p2−V (x))
, (153)
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which can be written as

N
x(t2)=x′′∫
x(t1)=x′

Dx(t)

∫
Dp(t) e

− i
2m~

t2∫
t1

dt (p−mẋ)2

e

i
~

t2∫
t1

dt (m2 ẋ
2−V (x))

. (154)

The momentum integral can be perform and its result is absorb into N to obtain
anotherN ′ and

〈x′′|Û(t2, t1)|x′〉 = N ′
x(t2)=x′′∫
x(t1)=x′

Dx(t) e

i
~

t2∫
t1

dt (m2 ẋ
2−V (x))

. (155)

In the last section we deliberately avoid to mention the Lagrangian function. Here,
we see that emerges naturally and has the form

L(x, ẋ) =
m

2
ẋ2 − V (x). (156)

Quantum mechanics was founded with the Hamiltonian function and the appear-
ance of the Lagrangian is solely due to the path integral approach. After defining the
momentum as

p =
∂L

∂ẋ
, (157)

the equations of motion derived from the action, with δx(t1) = 0 = δx(t2), is the
Euler-Lagrange equation

d

dt

∂L

∂ẋ
=
∂L

∂x
→ dp

dt
= −V ′(x). (158)

There is not obstacle for deriving the Hamiltonian for the Lagrangian given in equa-
tion (156). Thus, it seems that nothing profound is happening. However, if we con-
sider relativity, it is the Lagrangian the quantity that is best suited.

With the notion of spacetime, the time coordinate is on equal footing of spatial
coordinates. Notice the Hamiltonian necessarily breaks this since on-shell it corre-
sponds to the energy of the system and thus is Lorentz co-variant rather than invari-
ant.

To clarify this point consider a free relativistic particle. We know that the parti-
cle trajectory generate a curve (or worldline) in Minwkoski spacetime. The action is
proportional to the lenght of such curve. If the particle has massm we have

S[x] = −mc
u2∫
u1

du

√
−ηµν

dxµ

du

dxν

du
, µ, ν = 0, 1, . . . , D−1, x0 = ct, (159)
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where c is the speed of light andηµν are the components of the metric ofD-dimensional
Minwkoski spacetime R1,D−1 with ηµν = diag(−,+, . . . ,+). Notice that we con-
sider D − 1 space directions and we are using Einstein’s summation convention, i.e.
ηµν

dxµ

du
dxν

du stands for ∑
µν

ηµν
dxµ

du

dxν

du
. (160)

In the action, u parametrized all possible worldlines and the action is actually invari-
ant under reparametrizations. More important, the action is explicitly Lorentz in-
variant. Consider u = x0, then

S[x] = −mc2

t2∫
t1

dt

√
1− 1

c2
ẋ2, (161)

and thus
p =

mẋ√
1− 1

c2
ẋ2
. (162)

SinceH = p · ẋ− L and ẋ2 = p2c2

p2+m2c2
we obtain

H =
√
p2c2 +m2c4. (163)

On-shell we find
dp

dt
= 0, E =

√
p2c2 +m2c4. (164)

So far, everting looks good. Now consider the action

S[x,p] =

t2∫
t1

dt (p · x−H(x,p)), H =
√
p2c2 +m2c4. (165)

This action gives the same physical on-shell quantities but is not manifestly Lorentz
invariant. Moreover, if we want to consider its quantization, the Hamiltonian will be

Ĥ =
√
−~2∇2 +m2c2. (166)

Now, let us return the action given in (159) and now define the (D − 1)-momentum
as

pµ =
∂L

∂ dxµ

du

=
mcηµρ

dxρ

du√
−ηρσ dxρ

du
dxσ

du

. (167)

Then we will find that

H = pµ
dxµ

du
− L = 0, pµp

µ +m2c2 = 0. (168)
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From the second expression we derive

p0 =
√

p2 +m2c2. (169)

This is the usual Hamiltonian but our actual Hamiltonian vanishes off-shell. The
second off-shell expressions pµpµ + m2c2 = 0 plays a role of a constraint. In order
to incorporate this constraint off-shell, let us consider now the Lorentz invariant and
reparametrization invariant action

S[x, p,N ] =

u2∫
u1

du

(
pµ

dxµ

du
−NC

)
, C = pµp

µ +m2c2, (170)

We see thatN under the reparametrization u′ = u′(u) transforms as

N ′(u′) =
du

du′
N(u), (171)

in order to leave the action invariant. xµ(u) andpµ(u) transform a scalars, i.e. x′µ(u′) =
xµ(u) and p′µ(u′) = pµ(u). The equations of motion are

pµp
µ +m2c2 = 0,

dpµ
du

= 0,
dxµ

du
= 2Npµ. (172)

We see that N is dot dynamical and its equation gives C = 0. N corresponds to a
Lagrange multiplier. On-shell we find

− ηµν
dxµ

du

dxν

du
= −4N2pµp

µ = 4N2m2c2. (173)

which imply

2N =
1

mc

√
−ηµν

dxµ

du

dxν

du
. (174)

Then from the equation for xµ we recover the (D − 1)-momentum

pµ =
mcηµρ

dxρ

du√
−ηρσ dxρ

du
dxσ

du

. (175)

The key point now is that we can canonical quantize the theory by demanding Ĉ|ψ〉 =
0.

So we have seen the advantage of the use of the Lagrangian over the Hamiltonian
when we want to incorporate relativity and quantized the theory. However the action
given in (159) involves a square root and thus seems impossible to compute the path
integrals. For this reason consider the action

S[x, e] =
1

2

u2∫
u1

du

(
1

e
ηµν

dxµ

du

dxν

du
−m2c2e

)
, (176)

25



where e is not dynamical as in the case ofN and also makes the action reparametriza-
tion invariant. Its equation of motion is

1

e2
ηµν

dxµ

du

dxν

du
+m2c2 = 0. (177)

If we insert this into the action we find

S[x, eon−shell] =

u2∫
u1

du

(
1

e
ηµν

dxµ

du

dxν

du

)
= −mc

u2∫
u1

du

√
−ηµν

dxµ

du

dxν

du
,

(178)
Under parametrization, xµ again transform as a scalar and

e′(u′) =
du

du′
e(u). (179)

Notice that e is not a Lagrange multiplier as N but rather an auxiliary field. In both
cases they are not physical and its presence is to realized reparametrization invariance.
Since we have seen that demanding Lorentz invariance lead us to reparametrization
invariance one may think that the later is a fundamental symmetry. It is not a real
symmetry but rather a gauge symmetry, i.e. it is a redundancy in our description. One
can think of it as the price to keep the theory manifestly Lorentz invariant.

The (D − 1)-momentum and Hamiltonian result

pµ =
1

e
ηµν

dxν

du
, H = e(pµp

µ +m2c2). (180)

The equation for e implies again thatH = 0. Hence, we conclude that reparametriza-
tion invariance implies that on-shell: H = 0 and pµpµ + m2c2 = 0 appears as a
constraint. On the other hand, since the action is now quadratic, in principle we can
perform the path integral and after considering e it must be of the form

xµ(u2)=xµ2∫
xµ(u1)=xµ1

Dxµ(u)

∫
De(u) e

i
~S[x,e]. (181)

However, we do not know clearly what it stands for and how to deal with the redun-
dancies introduced by e. We will return to this point later.

We have discussed in detail, for a relativistic free particle, how the Lagrangian
is enters in a natural way to incorporate special relativity. Moreover, with the La-
grangian one can easily study different theories like non-relativistic particles, relativis-
tic p-dimensional membranes (p = 0 is a particle, p = 1 is a string, etc...) and fields.

The main goal of the next section is to discuss the path integral for fields but
before we end with a discussion of the ground state of a non-relativistic particle. Let
us assume that for a Hamiltonian of the form

Ĥ =
1

2m
p̂2 + V (x̂), (182)
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There is also the basis Ĥ|n〉 = En|n〉with
∑

n |n〉〈n| = 1̂ and 〈n′|n〉 = δn′n. Then

〈x′′|Û(t2, t1)|x′〉 =
∞∑
n=0

e−i
En
~ ∆t〈x′′|n〉〈n|x′〉, (183)

with ∆t = t2 − t1. The wave function ψn(x) = 〈x|n〉 is a solution of the time-
independent Schröndiger equation and we assume thatEn > E0 for n > 0.

Now let us consider the complex time

z = τ + it, (184)

and

W (z2, x
′′, z1, x

′) =
∑
n=0

e−
En
~ (z2−z1)ψn(x′′)ψ∗n(x′), (185)

with z1, z2 fixed. Let us further consider a contour γ defined in the complex time
plane with end points at z1 and z2 and

γ =

{
τ + it1 τ1 ≤ τ ≤ τ2

τ2 + it t1 ≤ t ≤ t2
. (186)

This is depicted in figure 1. Then, we see that

τ1
τ

τ2

t 

t1

t2
z2

z1

z

Figure 1: Contour γ.

W (z2, x
′′; z1, x

′) =
∑
n=0

e−
En
~ ∆τe−i

En
~ ∆tψn(x′′)ψ∗n(x′). (187)

The sum now is regulated for ∆τ > 0. Moreover for large values of ∆τ we find that
the only relevant term in the sum isE0∆τ . Hence, for ∆τ � 0 we find

W (z2, x
′′; z1, x

′) ≈ e−
E0
~ ∆τe−i

E0
~ ∆tψ0(x′′)ψ∗0(x′). (188)

The introduction of complex time serves as a regulator and also allow us to extract
the ground state ψ0(x′′).
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Now consider the complex-time evolution operator

Û(z2, z1) ≡ e−
1
~ (z2−z1)Ĥ . (189)

For a path integral representation of the matrix elements

W (z2, x
′′; z1, x

′) = 〈x′′|Û(z2, z1)|x′〉, (190)

we need to consider the following Euclidean action

SE [χ]|γ =

∫
γ

dz

(
m

2

(
dχ

dz

)2

+ V (χ)

)
, (191)

where now χ(z1) = x′, χ(z2) = x′′ and in general χ is complex. Notice that the
contour γ has nothing to do with the classical and virtual paths and in general the
Euclidean action is complex. Then, we consider

W (z2, x
′′; z1, x

′) =

χ(z2)=x′′∫
χ(z1)=x′

Dχ(z) e−
1
~ SE [χ]|γ . (192)

In order to extract the ground state, we see that only χ(z2) = x′′ corresponds to a
physical requirement and we should think χ(z1) = x′ as the condition that will lead
us to the ground state. Stating differently, we need to find the initial condition that
reproduces the ground state. Thus, χ(z1) = x′ is not a physical condition but rather
a mathematical one. We can see this from

W (z2, x
′′; z1, x

′) ≈ e−
E0
~ ∆τe−i

E0
~ ∆tψ0(x′′)ψ∗0(x′), ∆τ � 0. (193)

The contribution of x′ enters from ψ∗0(x′) and since want to extract ψ0(x′′), it has
no physical relevance.

Hence, we write

W (z2, x; z1) =

χ(z2)=x∫
χ(z1)

Dχ(z) e−
1
~ SE [χ]|γ . (194)

Notice that the only way to incorporate ∆τ � 0 in the path integral is via the con-
tour γ. Therefore we finally consider the prescription

ψ0(x) =

χ(z2)=x∫
χ(z1)

Dχ(z) e
− 1

~ SE [χ]| γ|∆τ�0 . (195)

Let us test the above for the harmonic oscillator. We now that ψ0(x) ∼ e
mω
2
x2 .

In spite that we can actually compute the full path integral, we will assume the limit
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1/m → 0. The reason behind this limit comes from the fact that the action can be
written as

SE [χ]|γ =
1

2g

∫
γ

dz

((
dχ

dz

)2

+ ω2χ2

)
≡ 1

2g
IE [χ]|γ , (196)

with g = 1/m. Then,
1

~
SE [χ]|γ =

1

2g~
IE [χ]|γ , (197)

and thus we can interchange the semiclassical limit ~ → 0 with the g → 0 limit.
This implies that only need to compute the action on-shell. The classical equations
of motion are

d2χ

dz2
= ω2χ, (198)

and thus we obtain

SE [χ]|γ
∣∣∣
on−shell

=
1

2g

(
χ

dχ

dz

)∣∣∣∣z2
z1

. (199)

Now we turn to the difficult part. The general solution of the equations is

χ(z) = A+eωz +A−e−ωz, (200)

and therefore

SE [χ]|γ
∣∣∣
on−shell

=
ω

2g
(A2

+e2ωz −A2
−e−2ωz)

∣∣z2
z1
,

=
ω

2g
(χ2(z2)2 − χ2(z1)),

=
mω

2
(x2 − χ2(z1)). (201)

Along the contour we see that the solution is of the form

χ(z) =

{
A+eωτ +A−e−ωτ τ1 ≤ τ ≤ τ2

A+eωτ2eiωt +A−e−ωτ2e−iωt t1 ≤ t ≤ t2
. (202)

where for convenience we have set t1 = 0. We must have

χ(z1) = A+eωτ1 +A−e−ωτ1 ,

x = A+eωτ2eiωt2 +A−e−ωτ2e−iωt2 . (203)

and (τ2− τ1)→∞. Let us fix τ2 and consider τ1 → −∞. For a finite value of χ(z1)
we must set A− = 0 such that χ(z1) = 0. We also obtain x = A+eωτ2eiωt2 which
imply thatA+ = e−iωt2 . Hence, the find a complex solution that gives

SE [χ]|γ
∣∣∣
on−shell

=
mω

2
x2. (204)

This means that ψ0(x) ∝ e−
mω
2~ x

2 . This example was enlightening. The domain of
applicability of the prescription is quantum strong coupling systems or semiclassical
ground state wavefunctions. In quantum cosmology, the Hartley-Hawking state a.k.a
the wavefunction of the universe, is calculated in this way.
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